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Assessment of Fouling in Plate Heat Exchangers with 

Machine Learning Algorithms 

 

Abstract 

Fouling is the accumulation of undesired particles on heat transfer surfaces which 

affects the heat transfer performance of a heat exchanger negatively. The accumulation 

of these particles prevents heat from being transformed through the heat exchangers 

by generating a fouling layer-like insulation. The main aim of the thesis is to 

investigate the machine learning algorithms to classify and predict the fouling status 

of PHE used in combi-boilers, to generate the background of the predictive 

maintenance, besides investigating the fouling effect on PHEs in terms of heat transfer 

and energy consumption by using a 1-D model. 

The required data to train the machine learning algorithms is acquired experimentally 

by using an artificially generated method for evaluating the fouling behavior. The 

effect of fouling on PHE performance is assumed as similar to the performance loss 

that would be occurred if the PHE that is already used in the combi-boiler, would be 

replaced with a PHE that has fewer plate numbers. The experiment results show that 

the expected trends of output temperatures and pressure drop values of both channels 

are seen.  

The overall heat transfer coefficient and fouling resistance coefficient are calculated 

as the performance values of the tested PHEs. As expected, the overall heat transfer 

coefficients are resulted in decreasing while the fouling resistance coefficient is 

increasing. 

The 1-D numerical model is generated by using Runge Kutta 4th order ordinary 

differential equation solving method. The differential equations are created based 

thermal resistance method for both channels to evaluate the temperature distributions 
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by using the experimental data. The results show that with less than 2% error the model 

is concluded to receive the correct outputs with the experimental outputs. 

The additional required power to reach the setpoint of DHW defined by the customer 

is calculated at maximum fouling by using the model results. The results show that 

combi-boiler appliances need to supply approximately 16 and 7 kW additional heat 

output to reach the required setpoint of DHW in case of maximum fouling for 32 and 

30 plates PHE, respectively. 

The obtained data is implied to train the machine learning algorithms, Naïve Bayes, k-

nearest neighbor, and decision tree. The k-fold cross-validation method is used to 

avoid overfitting for the implementation method. It results that the k-nearest neighbors 

model would be the best among the other models for predicting the classes according 

to the overall heat transfer coefficient values. The decision tree model results show 

that the model is independent of its maximum number of splits selection. The results 

show the decision tree model gives better performance in classifying than the Naïve 

Bayes model according to the accuracy results. 

 

Keywords: Fouling, machine learning, plate heat exchangers, classification, 1-D 

modeling, Runge Kutta, combi-boiler 
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Plakalı Isı Değiştiricilerde Kirliliğin Makine Öğrenmesi 

Algoritmaları ile İncelenmesi  

 

Öz    

Kirlilik, bir ısı değiştiricinin ısı transfer performansını olumsuz yönde etkileyen, ısı 

transfer yüzeylerinde istenmeyen parçacıkların birikmesidir. Bu parçacıkların 

birikmesi, yalıtım benzeri bir kirlilik tabakası oluşturarak ısının ısı değiştirici 

aracılığıyla aktarılmasını engeller. Tezin temel amacı, kombilerde kullanılan plakalı 

ısı değiştiricilerin kirlenme durumunu sınıflandırmak ve tahmin etmek için makine 

öğrenmesi algoritmalarını araştırmak, kestirimci bakımın arka planını oluşturmak, 

ayrıca plakalı ısı değiştiriciler üzerindeki kirlenme etkisini ısı transferi ve enerji 

açısından 1-B model kullanarak incelemektir. 

Makine öğrenimi algoritmalarını eğitmek için gerekli veriler, kirlenme davranışını 

değerlendirmek için yapay olarak oluşturulmuş bir yöntem kullanılarak deneysel 

olarak elde edilir. Kirlenmenin plakalı ısı değiştirici performansı üzerindeki etkisi, 

kombide halihazırda kullanılan plakalı ısı değiştiricinin daha az plaka numarasına 

sahip bir plakalı ısı değiştirici ile değiştirilmesi durumunda oluşacak performans 

kaybına benzer olarak kabul edilir. Deney sonuçları, her iki kanalın çıkış 

sıcaklıklarının ve basınç düşüş değerlerinin beklenen eğilimlerinin görüldüğünü 

göstermektedir.  

Toplam ısı transfer katsayısı ve kirlenme direnci katsayısı, test edilen plakalı ısı 

değiştiricilerin performans değerleri olarak hesaplanır. Beklendiği gibi, toplam ısı 

transfer katsayıları, kirlenme direnci katsayısı artarken azalmaktadır.  

1-B sayısal model, 4. Mertebeden Runge Kutta diferansiyel denklem çözme yöntemi 

kullanılarak üretilmiştir. Diferansiyel denklemler, deney verilerini kullanarak sıcaklık 
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dağılımlarını değerlendirmek için her iki kanal için de termal direnç yöntemi temel 

alınarak oluşturulmuştur. Sonuçlar, %2'ten daha az hata ile modelin, deney çıktılarıyla 

doğru çıktıların alındığı sonucuna varıldığını göstermektedir. 

Müşteri tarafından tanımlanan DHW set noktasına ulaşmak için gereken ek güç, model 

sonuçları kullanılarak maksimum kirlenme için hesaplanmıştır. Sonuçlar, maksimum 

kirlenme durumunda gerekli DHW set noktasına ulaşmak için kombi cihazlarının 

sırasıyla 32 ve 30 plakalı ısı değiştiriciler için yaklaşık 16 ve 7 kW ek ısı çıkışı 

sağlaması gerektiğini göstermektedir. 

Elde edilen veriler, makine öğrenmesi algoritmaları, Naive Bayes, k-en yakın komşu 

ve karar ağacını eğitmeye yöneliktir. Uygulama yöntemi olarak modelin fazla 

uydurmasını önlemek için çapraz doğrulama yöntemi kullanılır. Sınıfları toplam ısı 

transfer katsayısı değerlerine göre tahmin etmek için k-en yakın komşu modelinin 

diğer modeller arasında en iyisi olacağı sonucuna varılmıştır. Karar ağacı modeli 

sonuçları, modelin maksimum ayrım değeri seçiminden bağımsız olduğunu 

göstermektedir. Sonuçlar, karar ağacı modelinin doğruluk sonuçlarına göre Naive 

Bayes modeline göre sınıflandırmada daha iyi performans verdiğini göstermektedir. 

Anahtar Kelimeler: Kirlenme, makine öğrenmesi, plakalı ısı değiştiriciler, 

sınıflandırma, 1-B modelleme, Runge Kutta, kombi 
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Chapter 1 

Introduction 

1.1 Fouling in Plate Heat Exchangers 

Fouling is defined as the process of accumulation of undesired particulates on heat 

transfer surfaces [1]. The accumulation of these particulates causes a lack of heat 

transfer in the heat exchangers. The plate heat exchangers mostly used water as a fluid, 

thus the fouling problem is often occurred by the accumulation of particles coming 

from the other components of old, rusty installments or by precipitation of particles 

that contain a high amounts of calcium compounds. If the fouling is occurred by the 

accumulation of undesired particles, especially rusty metal compounds, the fouling 

type is named as particulate fouling. If the fouling is occurred by precipitation of 

calcium compounds contained in water, this type of fouling is named precipitation 

fouling. In addition, if the surface of the heat exchanger is exposed to corrosion of 

itself by water, particle dissociation from the surface and particle aggregation on the 

surface may have occurred. This type of fouling is named as corrosion fouling. These 

fouling types can be seen together as individually. If there is more than one fouling 

type is affected on the heating surface, the fouling type is named composite fouling. 

Especially, particulate fouling and precipitation fouling occurred together. 

Combi-boiler is a heating appliance that is used to heat the residence and provide 

domestic hot water to the customer. Domestic hot water is denominated for the hot 

water used in the shower/bath or the kitchen. The domestic hot water, whether 

provided via tank or instantaneous heating of mains water, is heated in the combi-

boiler appliances by using plate heat exchangers (PHE). The particulate fouling is 

encountered in the PHEs, due to the undesired rusty particles coming from the 

installments. The precipitation fouling is encountered in the PHEs, because the 
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calcium compounds lose their solubility in the water when the temperature of the water 

is increased, i.e., the water is heated. 

1.1.1  Combi-boilers 

A combi-boiler contains three main parts, the outside structure, the hydraulic part, and 

the heat cell part. The heat cell part is where the combustion of gaseous fuel, e.g., 

natural gas, is occurred. In Figure 1.1, the heat cell is designated as 1. The heat that is 

meant to transfer to the water is generated in this part of the combi-boiler. This heat 

transfer has occurred via a fuel-water heat exchanger, which is called a primary heat 

exchanger in combi-boilers. The water that is heated in primary heat exchangers has 

two functions. One is circulating through the radiator’s line and heating the residence, 

the other function is circulates through the second closed loop, through the PHE to 

heat the domestic hot water.  

 

Figure 1.1: The schematic of the combi-boiler 

The other essential part of the combi-boiler is the hydraulic. The water circulating 

pipes, the PHE, and the main controlled sensors are placed in this part. The PHE has 

two immiscible channels, one channel is for the water heated by the heat cell and goes 

through the line of radiators, central heating water (CH), the other channel is for the 
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domestic hot water which is coming as mains water and goes to the household for 

domestic usage, domestic hot water (DHW). In Figure 1.1, the PHE and its inlets and 

outlets are designated as 3.  

The CH water is circulated via a pump, as shown in Figure 1.1 as 2. The diverting of 

the water to the radiators line or PHE is provided by a 3-way diverter valve, shown in  

Figure 1.1 as 4. The diverter valve is controlled by the combi-boiler’s control unit. 

When the customer opens the tap for hot water, in the DHW line there is flow that is 

sensed by a flow sensor and transferred to the control unit. Then, the control unit sends 

a signal to the diverter valve to change its shaft to divert the water to the DHW line 

from the CH line. 

1.1.2  Fouling Behaviour 

Plate heat exchangers, which are used to transfer heat indirectly from the combustion 

gases to the domestic water side, are constantly under the influence of small particles 

and water-soluble compounds coming from other components of the heating system 

(combi-boiler parts, pipes, radiators, etc.) and the mains water. When the 

accumulations that cause blockage in the heat exchangers are examined, it is seen that 

the particles detached during the flow from the corrosion layer on the inner surfaces 

of the system components and the precipitation of the calcium compounds contained 

in the mains water on the surfaces with the effect of temperature change are the main 

factors causing the blockage. 

It is known that accumulations occur differently on the cold (mains water) and hot 

(central heating) flow sides of the plate heat exchanger. The accumulation on the mains 

water side occurs only because of the precipitation of crystals in the water. There are 

many studies in the literature examining this subject [2-6]. 

In these studies, the effect of water physio-chemical properties (temperature, pH, 

concentration, etc.) and heat exchanger geometry on the precipitation amount was 

investigated [2, 3, 6]. 

In addition, the effect of the precipitation of calcium compounds on the mains water 

side of the plate heat exchanger on the performance of the plate heat exchanger has 

been studied in detail [7]. 
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On the central heating side of the plate heat exchanger, there is a closed loop between 

the radiators and the boiler. Since there is no continuous mains water supply in the 

central heating cycle, compared to the domestic water side, the central heating side of 

the plate heat exchangers is much less affected by the pollution caused by the 

precipitation of calcium compounds [7]. 

Since the main material of the primary heat exchanger is aluminum, corrosion occurs 

on the surfaces in contact with water. In the examination carried out by Bosch 

Thermotechnology on used plate heat exchangers in this study, particle accumulation 

was observed in the plate heat exchanger. In addition, the particles causing clogging 

on the heating water side were investigated by FTIR (Fourier transformation infrared) 

analysis. As a result of the analysis, it was concluded that the particles that cause 

blockage because of high amounts of aluminum and oxygen element and low amounts 

of calcium element originate from the primary heat exchanger. The reason why the 

calcium element is found as a result of the analysis is that although it is a closed cycle 

without an active water supply, there are calcium crystals (CaCO3) crystals in the water 

in the CH line. It is known that the solubility of this calcium compound in water 

decreases at high temperatures. For this reason, the presence of calcium, which also 

allows the Al2O3 particles to be attached, affects  particle accumulation. This 

phenomenon is also studied in the study by Zhang et. al [6]. They studied the Al2O3 

particulate accumulation alone and then together with the calcium compounds. The 

result that is obtained that the fouling resistance coefficients which indicate the fouling 

layer thickness, are higher than the Al2O3 particulate accumulation studied alone.  

There are many factors that determine the cross section narrowing and the amount of 

pollution in the plate heat exchanger. The main of these factors are: 

1. The source, type and amount of the particles causing the blockage, 

2. Plate heat exchanger geometry, 

3. Flow characteristics (fluid velocity). 

4. Usage time  

With the FTIR analysis performed by Bosch Thermotechnology, it was seen that the 

biggest cause of blockage in the plate heat exchanger was the Al2O3 (alumina) 

compound. 
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In addition, the information coming from the field shows that in houses where the 

highest congestion failure is encountered, the old installations used show that other 

system components other than the combustion chamber also cause particle 

accumulation. 

Assuming that the installations cannot be changed, this source of pollution will not be 

considered as a parameter. 

The primary heat exchanger in the heat cell is produced by casting method from 

aluminum material in a cylindrical structure that will allow the fuel to burn in it. 

There are water passage channels that follow a helical path on the outer wall. There 

are contact of water with the aluminum surface over a large surface area. The 

parameters that affect the corrosion of aluminum with water are given below. 

1. Temperature 

2. Flow Rate 

3. pH 

When aluminum reacts with water, a natural oxide layer is formed on the wet surface, 

which provides resistance to the corrosion of the aluminum with mass loss. This oxide 

film layer can be examined in two layers the inner layer in direct contact with the metal 

and the outer layer in contact with water, whose structure changes depending on the 

temperature. The outer layer is active in electrochemical reactions with water due to 

flow and changing temperatures. The inner layer that encounters the metal continues 

to form as a result of the reactions with the aluminum. The corrosion of aluminum 

depends on the thickness of the oxide layer formed. The thickness of the oxide layer 

formed on the surface increases with temperature and time. As the temperature rises, 

the solubility of soluble gases (especially oxygen) in water decreases. This means more 

oxygen is available to react with aluminum [8]. 

1.1.2.1 Temperature Effect  

Up to 60-70 °C water temperature, the oxide film, which is a thin layer, cannot show 

sufficient resistance to the reactions with the ions in the water, and pitting corrosion is 

dominant on the aluminum surface. It is seen that the pitting depth at the surface 



6 

 

decreases as the temperature rises (Figure 1.2). At temperatures of 70 °C and above, 

the tendency to pitting corrosion gradually disappears. This is because the oxide layer 

tends to thicken and fill the pits. 

Table 1.1: Corrosion forms according to temperature change [8] 

Temperature Corrosion Forms 

<100 °C Pitting corrosion (above 60-70 °C in tap 

water, pitting corrosion tends to 

decrease) 

100 –150 °C Uniform corrosion 

150 – 250 °C Uniform corrosion and intergranular 

corrosion 

>250 °C Intergranular corrosion (with metal 

destruction) 

 

Figure 1.2: The pitting corrosion behavior according to temperature change [8] 

Between 100 and 150 °C, uniform corrosion is observed, which causes reductions in 

the cross-sectional area with wear affecting the entire surface area. At 150 °C and 

above, the effect of intergranular corrosion begins to be seen. The relationship of 

temperature with corrosion is summarized in Table 1 [8]. 

In simulations made by Bosch Thermotechnology, the temperature distribution on the 

aluminum wet surface of the corroded primary heat exchanger was investigated. The 

water temperatures during the operation were taken as the design temperatures of 60 

and 80 °C, respectively, at the inlet and outlet of the primary heat exchanger. 



7 

 

1.1.2.2 Flow Rate Effect  

In a situation where all other parameters are kept constant, the corrosion effect of 

stagnant water on the wet aluminum surface is greater than that of water flowing up to 

a certain speed. 

At high velocities, the effect of the flow is seen as erosion on the aluminum wet 

surface. Aluminum can withstand erosion effects up to 2.5 – 3 m/s [8]. The highest 

average speed seen in the primary heat exchanger in existing Bosch combi devices is 

1.5 m/s. When viewed from a general point of view at these flow rates, it is expected 

that there will be no erosion effect on the surface. It was determined that the variable 

cross-sectional area of the water passage channel in the primary heat exchanger and 

the Reynolds number varied between 20795 and 59297. Assuming the critical 

Reynolds number of 2300 for in-channel flow, the flow in the primary heat exchanger 

is determined to be turbulent. For this reason, it is possible to see instantaneous and 

locally high velocities and therefore erosion of wet surfaces. 

The oxide layer formed on the aluminum surface is not stable in flowing environments. 

At low velocities, there is a decrease in reaction rates relative to the stagnant flow. 

Reduction in reaction rates shows a decrease in mass loss from the wet surface in the 

case of pitting corrosion (at temperatures below 60 °C), and a decrease in the rate of 

layer formation in the formation of an oxide layer. 

At high flow rates, aluminum becomes vulnerable as the flow breaks the oxide layer 

formed from the surface. As the aluminum becomes unprotected, the corrosion effect 

on the surface increases and mass loss occurs. The cycle between the pump not 

working and working conditions in the boiler can create an unstable and unpredictable 

cycle of accumulation and rupture on the surface. Therefore, the rupture of the 

corrosion layer in the primary heat exchanger in the combustion chamber depending 

on the flow rate is another parameter that causes accumulation in the plate heat 

exchanger. 

1.1.2.3 pH Effect  

While the pH value of water is between 5 and 8, the solubility of aluminum oxide in 

water is much less than in more acidic or basic environments (Figure 1.3). 
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In Figure 1.3, solubility is expressed with the concept of normality, which is the 

equivalent number of grams of the substance dissolved in one liter of solution. In acidic 

and basic environments where aluminum oxide dissolves, the aluminum surface 

remains unprotected. Therefore, corrosion, which causes particle breakage to cause 

mass loss, is more common in acidic and basic environments [9, 10]. 

 

Figure 1.3: The variation of aluminum oxide solubility in water with pH [8] 

In the reactions that occur because of the contact of aluminum with water, H+ and OH- 

ions are formed which can change the pH of the environment [10]. In the pits formed 

because of pitting corrosion, where these reactions are intense, the pH value of the 

water changes to acidic and basic [11]. 

It is predicted that the reaction rate changes with more than one parameter such as 

temperature, flow rate, according to the operating dynamics of the boiler. It is foreseen 

that this reaction rate change causes small changes in the pH value of the water, and 

that because of this pH change, the reactions may accelerate. 

Generally used tap water has a pH between 6.5 and 8.5. Although partial pH changes 

can be seen, the pH value of water in general is the range in which aluminum oxide 

shows low dissolution. Therefore, the effect of pH value on corrosion will not be 

considered in this study. 
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1.2 Predictive Maintenance 

At the beginning of the fouling process, the accumulations only affect the flow locally, 

grow as time progresses and become in a position to affect the efficiency of the plate 

heat exchanger completely, such as narrowing and congestion in the cross sections of 

channels. Thus, the prevention of fouling is essential to avoid the lack of customer 

comfort. 

The prevention of fouling is recently associated with predictive maintenance. In recent 

time, the well-known maintenance process is reacting to the problem of a machine at 

the time the failure occurs. If maintenance has occurred in a schedule that the time is 

decided according to statistics not real-time data, this maintenance type is only 

preventing. During this preventing maintenance, there can be a time that the machine 

can work without failure, however, it is not known. This causes unnecessary 

maintenance costs. If the need for maintenance of a machine would be known, the 

maintenance would be carried out just in time and need. The predictive maintenance 

concept contains this phenomenon. If the status of a machine is monitored and 

processed during the machine’s operating hours, and the failure point can be trained to 

an algorithm, the maintenance time can be predicted. The status classification of the 

machine can be obtained by using machine learning techniques.  

In this thesis, the fouling status, i.e., failure status caused by fouling, would be known 

by applying the machine learning algorithms for classification. For the given data, 

models are trained to classify the unseen data that would be encountered during the 

operation of the combi-boiler.  

In the literature, modeling and prediction algorithms have become popular study 

subjects recently in the area of fouling prevention or predictive maintenance. These 

algorithms, which include algorithms for prediction and detection based on 

autoregressive integrated moving average (ARIMA) [12], auto-associative kernel 

regression (AAKR) [13], support vector machines (SVM) [14, 15], and artificial neural 

networks (ANN) [16-20], have largely been based on statistical methods and machine 

learning algorithms. Kalman filter research has also looked at model-based fouling 

prediction [21]. 
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An algorithm to forecast fouling behavior has also been examined with the predictive 

maintenance technique. The design of the predictive maintenance procedures is mostly 

based on data-driven fault diagnosis. This algorithm's goal is to identify abnormalities, 

and fault diagnostics often concentrate on statistical techniques that offer classification 

and clustering. The majority of failure mechanisms are connected to deterioration 

processes [22]. 

By keeping an eye on the health system, as in reference, the data collection procedure 

may be maintained [23]. Naive Bayes, k-nearest neighbors (kNN), decision trees, and 

random forests are some of the machine learning methods used for classification. 

These algorithms are successfully researched by Shohet et al. [24] to classify boiler 

defects using simulation results. The decision tree model provides the best outcome 

with 97.8% accuracy as a result. As observed from the references, machine learning 

algorithms are typically utilized in the HVAC business, particularly in heat 

exchangers, but when open resources are taken into account, the classification machine 

learning algorithms on PHEs have barely been examined. 
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Chapter 2 

Method 

The process of the study is carried out in titles of data acquisition, data implementation 

of partial blockage assessment and data implementation of fouling assessment 

methods.  

2.1 Data Acquisition 

A data acquisition method is generated to simulate the fouling behavior in PHEs. The 

data that is needed to imply in algorithms, is acquired by using experimental methods. 

The experiment process is maintained with experiment procedure design, experiment 

parameters determination, experiment test rig setup and data reduction, respectively.  

2.1.1 Experiment Procedure Design 

Healthy and faulty data is needed to train the algorithm which is required for the 

algorithm to distinguish. Healthy data stands for the zero-hour performance of PHE 

while there is no fouling and PHE has its most effective status, i.e., is healthy.  

The PHEs are designed to be used in combi-boilers according to the heat transfer 

requirements of combi-boilers. The power outputs of combi-boilers, i.e., heat transfer 

outputs, in product portfolios are generated by companies regarding the general needs 

of households. The PHEs are designed to meet this required power output and carry 

out the required heat transfer from heated water by natural gas to DHW in determining 

volume flow rates.  

The volume flow rate of the DHW line is limited and controlled with a flow limiter 

device in combi-boiler utilities to keep the volume flow rate constant. The DHW goes 
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through one channel of PHE. The other channel, the CH water line is circulated with 

a pump. When DHW usage is required by the customer, the combi-boiler operates at 

its maximum power, thus the volume flow rate of CH water is kept constant. Therefore, 

PHEs are designed to maintain a temperature difference with the specific two flow 

rates of its two channels to provide the required heat transfer. 

According to the mentioned requirements, the number of plates of PHEs is determined 

to be used in combi-boilers which gives specific maximum power. Each PHE with a 

number of plates has a technical specification that indicates the temperature difference 

corresponding to volume flow rates of both channels. These data that are generated in 

design process of PHEs, are stood for the zero-hour performance, when there is no 

fouling in channels. Consequently, these technical design data of PHEs for particular 

number of plates are used as healthy data that denotes the reference performance 

values to imply algorithms. 

Faulty data stands for the performance data (outlet temperatures of channels, pressure 

drop of channels) of PHEs after fouling starts. The faulty data is generated from 

experiments. 

During the design process of the experiment procedure, it is assumed that when fouling 

in PHE starts, the effect of fouling on the performance of PHE would be the same if 

the PHE has a smaller number of plates would be used instead of the designed one 

according to the combi-boiler power output. Therefore, to simulate the fouling 

behavior in PHEs, the technical specifications of a PHE are applied as experiment 

parameter to a PHE that has a smaller number of plates. 

2.1.2 Experiment Parameters 

The volume flow rates of the DHW line and CH water line are kept as constant as it is 

possible during operation in real life of a combi-boiler. Therefore, the volume flow 

rates of both water lines are kept constant during tests. The used volume flow rate 

values in liter per minute (l/min) are shown in Table 2.1.  

The mentioned technical specifications of PHEs that have 30 and 32 plates are applied 

as test conditions to PHEs that have 28, 26, 24, 22, 20, 18 and 16 plates. The DHW 
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and CH volume flow rate values in the technical specification of a PHE that has 32 

plates, are used as a test condition that would give the reference performance values 

of a PHE with 32 plates, indicating the healthy value, as shown in Test 1. Similarly, 

the used volume flow rates of both channels for a PHE that has 30 plates as a test 

condition are the volume flow rate values in the technical specification of a PHE with 

30 plates, also it would give the healthy value, as shown in Test 10.  

Table 2.1: Experiments and conditions applied to demonstrate the clogging behavior 

of the PHEs   

 Condition 1  Condition 2 

 Tested 

PHE 

plate 

number 

CH 

Flow 

Rate 

(l/min) 

DHW 

Flow 

Rate 

(l/min) 

 

Tested 

PHE 

plate 

number 

CH 

Flow 

Rate 

(l/min) 

DHW 

Flow 

Rate 

(l/min) 

Test 1 32 29 18 Test 10 30 26 10.3 

Test 2 30 29 18 Test 11 28 26 10.3 

Test 3 28 29 18 Test 12 26 26 10.3 

Test 4 26 29 18 Test 13 24 26 10.3 

Test 5 24 29 18 Test 14 22 26 10.3 

Test 6 22 29 18 Test 15 20 26 10.3 

Test 7 20 29 18 Test 16 18 26 10.3 

Test 8 18 29 18 Test 17 16 26 10.3 

Test 9 16 29 18     

Furthermore, except Test 1 and 10 the rest of the Tests shown in Table 2.1 represent 

the tests that would give results the faulty data. In the fault tests (Test 

2,3,4,5,6,7,8,9,11,12,13,14,15,16 and 17), the volume flow rates from technical 

specifications of 32 and 30 plates are used for the PHEs that have 28 to 16 plate 

numbers, as it is shown in Table 2.1. So as in Test 2, when the 32 plates PHE technical 

specifications are applied to 30 plates PHE, the result is assumed to show a 

performance decrease if the 2 plates of 32 plates PHE are clogged. Similarly, the same 

inference can be deduced for other test conditions. In the end, in Test 9, clogging of 

16 plates, 50% clogging for 32 plates, is evaluated as the worst case.  
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The DHW and CH inlet temperatures are kept constant for all test conditions, 1 to 17. 

10−1
0  °C and 72−1

1 °C are DCW and CH water line inlet temperatures, respectively. 

The inlet temperatures are taken from the design inlet temperature parameters for 

PHEs according to the inlet temperatures that the PHE would be most exposed to 

during the operation of the combi-boiler in real life.  

2.1.3 Test Rig 

The PHEs that have 32 and 30 plates are tested stand-alone in the test rig according to 

the test conditions shown in Table 2.1. The stand-alone test demonstrates a test in 

which only the component, i.e., PHE is tested with the conditions that would be 

occurred in real life in combi-boiler. The inlet temperatures and flow rates of both 

channels of a PHE are used as in 2.1.1.  

The stand-alone test rig simulates the DHW line and CH line as in real life as possible 

as it is. The experimental setup contains two lines that represent CH line (orange 

colored) and DHW line (green colored) circuits (Figure 2.1). 

In both lines, pneumatic valves are placed to direct the water to the required line. Also, 

both lines have flow control valves and flow meters to provide information to control 

and measure the volume flow rate of water circuits. The DHW line simulates the open 

flow circuit as in real life. The CH water line simulates the closed loop circuit as in 

real life in combi-boilers. The CH line has a pump to circulate the water through the 

closed loop. A tank is used to store the heated water by another closed water loop 

which is heated by a combi-boiler. Here the combi-boiler is used as a heating source 

only. The yellow-colored line represents the gas line that the combi-boiler needs 

during operation. A gas valve is placed on the gas line to control the gas passing 

through the combi-boiler for safety reasons.  

The PHE is shown as tested PHE in schematic. Pressure difference and inlet and outlet 

temperatures are measured from the temperature and pressure differentiation sensors 

that is placed in both lines.  

There is another plate heat exchanger is used in the test rig to control the CH inlet 

temperature to test PHE. The simulated CH water line is heated by a combi-boiler 

although non-directly. There is no combi-boiler automatic control to adjust the CH 
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inlet temperature to test PHE in the rig. Therefore, a heat exchanger is placed to 

provide cooling to the heated CH water line to adjust the required inlet temperature of 

CH to test PHE.  

 

Figure 2.1: Stand-alone test rig schematic for PHE  

 

During tests, the steps listed below are followed. 

1. Place the PHE to be tested. 

2. Supply water to CH closed loop up to 2 bar statistic pressure. 

3. Turn on the combi-boiler and adjust the set temperature according to the 

required one in CH closed loop. 

4. Turn on the CH circuit pump and adjust the modulation percentage according 

to get the required volume flow rate. 

5. Use a flow control valve to get better accuracy in volume flow rate. 

6. Heat the CH water to the required temperature.  

7. Use the additional heat exchanger by providing cooling to achieve better 

accuracy in temperature. 

8. Adjust the set point of the chiller system. 

9. Turn on the DCW valve in the chiller line to supply the DCW to the PHE. 
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10. Adjust the flow control valve placed in the DCW line to get the required 

volume flow rate. 

11. Measure the outlet temperatures of PHE channels and pressure difference. 

12. Repeat the steps for the new PHE to be tested. 

2.1.4 Data Reduction 

The most essential effect of fouling on PHE is performance decreasing, i.e., pressure 

difference increasing and heat transfer efficiency decreases.  

The obtained data from experiments are inlet and outlet temperatures, volume flow 

rates and pressure differences of CH and DHW channels of PHE. The overall heat 

transfer coefficient and fouling resistance coefficient are calculated from these data 

that are obtained from experiments to evaluate the performance behavior of PHEs.  

The overall heat transfer coefficient is calculated by using the logarithmic mean 

temperature difference (LMTD) method. In Equation (2.1), the total heat transfer rate 

should be calculated first to get the overall heat transfer coefficient that is denoted as 

U. The area, which is denoted as A, is taken as the heat transfer area, i.e., the projection 

area of plates. LMTD is calculated as in Equation (2.2) for every test condition.  

  Q̇total = UA∆Tlm (2.1) 

 ∆Tlm =
∆T1 − ∆T2

ln (∆T1 ∆T2⁄ )
  (2.2) 

Here the ∆𝑇1 and ∆𝑇2 are representing the temperature difference between two 

channels at the inlet and outlets of the PHE. Due to counter-flow in PHE, ∆𝑇1 and ∆𝑇2 

are calculated as in Equation (2.3) and (2.4). 

 ∆𝑇1 = 𝑇ℎ,𝑖𝑛 −  𝑇𝑐,𝑜𝑢𝑡 (2.3) 

 ∆𝑇2 = 𝑇ℎ,𝑜𝑢𝑡 −  𝑇𝑐,𝑖𝑛  (2.4) 
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𝑇ℎ,𝑖𝑛 and 𝑇ℎ,𝑜𝑢𝑡 denote the inlet and outlet temperatures of hot channel, i.e., CH water 

channel. 𝑇𝑐,𝑖𝑛 and 𝑇𝑐,𝑜𝑢𝑡 denote the inlet and outlet temperatures of cold channel, i.e., 

DHW channel. The inlet and outlet temperatures of both channels and the temperature 

differences (∆𝑇1 and ∆𝑇2) are represented in Figure 2.2. 

 

Figure 2.2: Inlet and outlet temperature modeling of the counter-flow PHE  

 

The total heat transfer rate that is denoted as 𝑄̇𝑡𝑜𝑡𝑎𝑙 is determined from an energy 

balance of the water flowing through PHE channels. 𝑄̇𝑡𝑜𝑡𝑎𝑙 is calculated as shown in 

Equation (2.6) by using Equation (2.5). The calculation method is referenced in the 

study by Zhang et al. [6]. 

 𝑄̇𝑖 = 𝑚̇𝑖𝑐𝑝,𝑖∆𝑇𝑖, 𝑖 ∈ {ℎ, 𝑐} (2.5) 

 𝑄̇𝑡𝑜𝑡𝑎𝑙 =
1

2
(𝑄̇ℎ + 𝑄̇𝑐) (2.6) 

Here, 𝑚̇ is mass flow rate, 𝑐𝑝 is the specific heat at constant pressure and ∆𝑇 is the 

temperature difference between the inlet and outlet temperatures of CH and DHW 

channels. The heat transfer rate in the hot channel and cold channel may differ in real 

cases, therefore the heat transfer rates are taken average to calculate the total heat 

transfer rate. 

After calculating the total heat transfer rate and the LMTD with known heat transfer 

area, the overall heat transfer coefficient can be calculated as in Equation (2.7). 

 𝑈 =
𝑄̇𝑡𝑜𝑡𝑎𝑙

𝐴∆𝑇𝑙𝑚
 (2.7) 
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The particles accumulated on the surface of plates create an effect similar to an 

insulating layer. The fouling layer represents an additional resistance to heat transfer 

and causes the heat transfer to decrease. This effect of fouling on heat transfer is 

represented by a fouling resistance, Rf. The fouling factor is calculated for Test 2 to 

Test 8, shown in Table 2.1. The fouling factor is zero for Test 1, i.e., reference test 

conditions. 

Heat transfer is carried out from the hot fluid, CH water, to the plate by convection, 

through the plate by conduction, and from the plate to the cold fluid, DHW by 

convection. The heat transfer to the surroundings is neglected while the PHE is 

modeling. The radiation effects are included in convection heat transfer coefficients. 

The thermal resistance method is used to find the fouling resistance coefficient. The 

thermal network of a volume unit of PHE is shown in Figure 2.3. The convection heat 

transfer resistances, RCH and RDHW, that are generated from hot fluid to plate and plate 

to cold fluid and the conduction heat transfer resistance, RP, that is generated through 

the plate also can be seen in Figure 2.3. The fouling resistance can be found in Equation 

(2.8) by using the convection, conduction resistance coefficient and overall heat 

transfer coefficient. In Equation (2.8), ℎ𝐶𝐻 and ℎ𝐷𝐻𝑊 represent the convection heat 

transfer coefficient. A denotes the cross-sectional area. L is the length of the plate 

through the heat transfer direction. The conduction heat transfer coefficient denoted as 

k which is taken for the plate material, 316L stainless steel.  

 

 

Figure 2.3: The thermal resistance network of a volume unit of PHE 

 
1

𝑈. 𝐴
= 𝑅𝐶𝐻 + 𝑅𝑃 + 𝑅𝐷𝐻𝑊 + 𝑅𝑓 =

1

ℎ𝐶𝐻𝐴
+

𝐿

𝑘𝐴
+

1

ℎ𝐷𝐻𝑊𝐴
+ 𝑅𝑓 (2.8) 
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2.2 Data Implementation of Fouling Assessment 

The fouling effects on PHEs are investigated by generating a 1-D model in MATLAB 

program to validate the experimental results. The 1-D modeling is created based on 

finite volume elements. The PHE is modeled as discretized volumes. The PHE is 

modeled as two channels, CH and DHW, and one plate. The energy balance equation 

is used to model the heat transfer between the channels and the plate. The generated 

PHE model is discretized to volumes where the energy balance equation is applied. 

There is convective heat transfer between the channel and the plate for both hot and 

cold channels, i.e., CH and DHW channels, while there is conduction heat transfer 

from the hot surface of the plate where is faced to hot fluid to cold surface of the plate 

where is faced to cold fluid. This heat transfer flow is modeled based on thermal 

resistance method. The resistance model is created starting from the convection heat 

transfer from hot fluid to plate surface, then it goes with the conduction heat transfer 

through the plate, it is followed by the convection heat transfer from plate surface to 

cold fluid. Similar thermal resistance model is used with the one shown in Figure 2.3.  

The fouling as mentioned in 2.1.4, is the accumulation of undesired particulates on 

plate surfaces. This accumulation results in generation of a fouling layer which acts 

like an insulation layer. Therefore, while the thermal resistance model is creating, the 

resistance of fouling layer, i.e., fouling resistance should be considered on the plate 

surfaces between the convection heat transfer coefficients from fluids to plate and 

conduction heat transfer coefficients through plate. The fouling resistance coefficients 

are added to the thermal resistance model as shown in Figures 2.4 and 2.5. 

 

Figure 2.4. Discretized PHE model 
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The energy balance equations are created from a reference where the dynamic behavior 

of temperature distribution is studied by Bobic et al., [33]. In the equations of hot and 

cold channel (Equation (2.9) and (2.10)), left-hand side of the equations represents the 

internal energy that specified volume has. In the right-hand side of the equations, the 

heat transfer coming from the previous volume, the heat that is transferred to next 

volume and the heat transfer between the wall and fluid is modeled. The conduction 

heat transfer through the wall is modeled based on energy balance shown in Equation 

(2.11). 

 

Figure 2.5. Thermal resistance model of PHE with the addition of fouling layers 

 𝑉ℎ𝜌𝑐𝑝

𝑑𝑇ℎ,𝑖

𝑑𝑡
= 𝑚̇ℎ𝑐𝑝𝑇ℎ,𝑖−1 − 𝑚̇ℎ𝑐𝑝𝑇ℎ,𝑖+1 − 𝐴𝛼ℎ(𝑇ℎ,𝑖 − 𝑇𝑤:ℎ,𝑖) (2.9) 

 𝑉𝑐𝜌𝑐𝑝

𝑑𝑇𝑐,𝑖

𝑑𝑡
= 𝑚̇𝑐𝑐𝑝𝑇𝑐,𝑖−1 − 𝑚̇𝑐𝑐𝑝𝑇𝑐,𝑖+1 + 𝐴𝛼𝑐(𝑇𝑤:𝑐,𝑖 − 𝑇𝑐,𝑖) (2.10) 

 𝑉𝑤𝜌𝑐𝑝

𝑑𝑇𝑤,𝑖

𝑑𝑡
= 𝐴

2𝑘

𝑙
[(𝑇𝑤:ℎ,𝑖 − 𝑇𝑤,𝑖) − (𝑇𝑤,𝑖 − 𝑇𝑤:𝑐,𝑖)] (2.11) 

In the Equation (2.9), (2.10) and (2.11), V stands for volume, m3, ρ represents the 

density of fluids, kg/m3, T represents the temperature, °C, 𝑚̇ represents the mass flow 

rate, kg/s, cp represents the specific heat at constant pressure, J/kg°C, A represents the 

heat transfer area, m2, 𝛼 represents the convection heat transfer coefficient, W/m2K, k 

represents the thermal conductivity, W/mK, and l represents the length of plate while 

the h,c and w are subscripts that stand for hot channel, cold channel and wall (plate), 

respectively. 
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The relation between surface of the wall and center of the wall is evaluated regarding 

the thermal resistance method as shown in Equation (2.12) and (2.13) to reduce the 

unknown variables. Here, U represents the overall heat transfer coefficient.  

 𝑇𝑤:ℎ,𝑖 = 𝑇ℎ,𝑖 −
𝑈ℎ,𝑖

𝛼ℎ,𝑖
(𝑇ℎ,𝑖 − 𝑇𝑤,𝑖) (2.12) 

 𝑇𝑤:𝑐,𝑖 = 𝑇𝑐,𝑖 −
𝑈𝑐,𝑖

𝛼𝑐,𝑖
(𝑇𝑐,𝑖 − 𝑇𝑤,𝑖) (2.13) 

A relation between cell temperature, denoted as i, and previous and next cell 

temperature, denoted as i-1 and i+1, is structured by taking average of the previous 

and next cell temperatures to indicate the cell temperature as shown in Equation (2.14) 

and (2.15). 

 𝑇ℎ,𝑖 =
𝑇ℎ,𝑖−1 + 𝑇ℎ,𝑖+1

2
 (2.14) 

 𝑇𝑐,𝑖 =
𝑇𝑐,𝑖−1 + 𝑇𝑐,𝑖+1

2
 (2.15) 

By applying Equation (2.12), (2.13), (2.14) and (2.15) into Equation (2.9), (2.10) and 

(2.11), final equations used to structure the model in MATLAB given in Equation 

(2.16), (2.17) and (2.18). 

 
𝑑𝑇ℎ,𝑖

𝑑𝑡
= ∁1(𝑇ℎ,𝑖−1 − 𝑇ℎ,𝑖) − ∁2(𝑇ℎ,𝑖 − 𝑇𝑤,𝑖) (2.16) 

 
𝑑𝑇𝑐,𝑖

𝑑𝑡
= ∁3(𝑇𝑐,𝑖−1 − 𝑇𝑐,𝑖) + ∁4(𝑇𝑤,𝑖 − 𝑇𝑐,𝑖) (2.17) 

 
𝑑𝑇𝑤,𝑖

𝑑𝑡
= ∁5(𝑇ℎ,𝑖 − 𝑇𝑤,𝑖) − ∁6(𝑇𝑤,𝑖 − 𝑇𝑐,𝑖) (2.18) 

 ∁1=
2𝑚̇ℎ

𝑉ℎ𝜌
, ∁2=

𝐴𝑈ℎ,𝑖

𝑉ℎ𝜌𝑐𝑝
 (2.19) 

 ∁3=
2𝑚̇𝑐

𝑉𝑐𝜌
, ∁4=

𝐴𝑈𝑐,𝑖

𝑉𝑐𝜌𝑐𝑝
 (2.20) 

 
∁5=

(𝐴
2𝑘
𝑙

−
𝐴2𝑘𝑈ℎ,𝑖

𝑙𝛼ℎ,𝑖
)

𝑉𝑤𝜌𝑐𝑝
, ∁6=

(𝐴
2𝑘
𝑙

−
𝐴2𝑘𝑈𝑐,𝑖

𝑙𝛼𝑐,𝑖
)

𝑉𝑤𝜌𝑐𝑝
 

(2.21) 
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In Equation (2.16), (2.17) and (2.18), the coefficients are indicated as ∁, where physical 

properties and constants are denoted. The coefficients are given in Equation (2.19), 

(2.20) and (2.21). The overall heat transfer coefficient, U, represents the combination 

of conduction, convection and fouling thermal resistance coefficients as shown in 

Equation (2.22) and (2.23). 

 𝑈ℎ,𝑖 = (
1

αh,i
+ 𝑙/2𝑘+𝑅𝑓,ℎ)−1 (2.22) 

 𝑈𝑐,𝑖 = (
1

α𝑐,i
+ 𝑙/2𝑘 + 𝑅𝑓,𝑐)−1 (2.23) 

The differential equations shown in Equation (2.16), (2.17) and (2.18) are solved by 

using Runge Kutta 4th order method. The Runge Kutta method is used for solving the 

ordinary differential equations (ODE). In solving methodology, the coefficients are 

calculated and the next step in time is calculated in the main equation (Equation 

(2.24)). The coefficient calculations are given in Equation (2.25), (2.26), (2.27) and 

(2.28). 

 𝑦𝑖+1 = 𝑦𝑖 + 1/6(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4)ℎ (2.24) 

 𝑘1 = 𝑓(𝑡𝑖, 𝑦𝑖) (2.25) 

 𝑘2 = 𝑓(𝑡𝑖 +
1

2
ℎ, 𝑦𝑖 +

1

2
𝑘1ℎ) (2.26) 

 𝑘3 = 𝑓(𝑡𝑖 +
1

2
ℎ, 𝑦𝑖 +

1

2
𝑘2ℎ) (2.27) 

 𝑘4 = 𝑓(𝑡𝑖 + ℎ, 𝑦𝑖 + 𝑘3ℎ) (2.28) 

Here, in the equations, h stands for time step, t is time. The y represents the temperature 

of hot and cold channel, and plate in our calculations. The differential equation solvers 

are used for hot and cold channel, and plate. 
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2.3  Data Implementation of Partial Blockage 

Assessment 

The assessment of partial blockage process is represented in titles of data grouping, 

data importing and model training. 

2.3.1 Data Grouping 

The supervised machine learning algorithms need a known set of input data grouped 

as predictors, i.e., parameters, and known responses to the data, like classes or labels. 

Here, during preprocessing the experiment data, 6 cases are created regarding to 

grouping the data by responses and predictors. The cases are listed in Table 2.2. 

In 1st case shown in Table 2.2, the inlet and outlet temperatures, the pressure drops and 

the flow rates of CH and DHW channels are used as predictors, while the test 

conditions, i.e., Test 1 to 17 as shown in Table 2.1, are used as responses. Test 1 and 

Test 10 are representing the healthy value, therefore they grouped as Zone 0. Test 2 

and Test 11 are representing the clogging of 2 plates, i.e., faulty value, thus they 

grouped as Zone 2. Similarly, Test 3 and 12 are Zone 3, Test 4 and 13 are Zone 4, etc. 

In the end, Test 9 is the only one in which the clogging of 16 plates effects is tested 

and represented as Zone 8. 

In 2nd, 3rd and 4th cases, the calculated overall heat transfer coefficient (U) is used as 

predictor. In 3rd case, to reduce the group number, the test results corresponding to the 

test conditions, i.e., Zone 0 to 5, are grouped in 2, e.g., results of Zone 0 and Zone 1 

are grouped as Group 1, etc. The final group is created for Zone 6,7 and 8. The clogging 

plate numbers in the tests, can be represented as clogging percentage as well. The 

maximum clogging level indicates 50% clogging in PHEs for evaluating the clogging 

of 16 plates of 32 plates PHE. The clogging percentages are calculated for each test 

and are represented in 4th cases as percentage groups, from 0-10% clogging to 40-50% 

clogging.  
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Table 2.2: Experiment data grouping cases according to predictor and response group 

Case Predictor        Response Group 

1 • CH inlet temperature 

• DHW inlet temperature 

• CH outlet temperature 

• DHW outlet temperature 

• CH flow rate 

• DHW flow rate 

• CH pressure drop 

• DHW pressure drop 

 

• Zone 0 

• Zone 1 

• Zone 2 

• Zone 3 

• Zone 4 

• Zone 5 

• Zone 6 

• Zone 7 

• Zone 8 

2 • Overall heat transfer 

coefficient 

 

• Zone 0 

• Zone 1 

• Zone 2 

• Zone 3 

• Zone 4 

• Zone 5 

• Zone 6 

• Zone 7 

• Zone 8 

3 • Overall heat transfer 

coefficient 

 

• Group 1 

• Group 2 

• Group 3 

• Group 4 

4 • Overall heat transfer 

coefficient 

 

• 0-10%, P1 

• 10-20%, P2 

• 20-30%, P3 

• 30-40%, P4 

• 40-50%, P5 

 

5 • CH pressure drop 

• DHW pressure drop 

 

• Zone 0 

• Zone 1 

• Zone 2 

• Zone 3 

• Zone 4 

• Zone 5 

• Zone 6 

• Zone 7 

• Zone 8 
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Table 2.2 (continued): Experiment data grouping cases according to predictor and 

response group 

6 • CH inlet temperature 

• DHW outlet temperature 

• DHW flow rate 

 

• Zone 0 

• Zone 1 

• Zone 2 

• Zone 3 

• Zone 4 

• Zone 5 

• Zone 6 

• Zone 7 

• Zone 8 

In 5th case, the pressure drops of CH and DHW channels are used as predictors to see 

if the only parameters known would be the pressure drops which would be the 

performance of the machine learning algorithms classification. In similar, the CH inlet 

temperature, DHW outlet temperature and DHW flow rate are used as predictors in the 

6th case to see if the algorithm performance would be sufficient with these parameters. 

These parameters are selected because they are measured during real life operation in 

combi-boiler. 

The test conditions are representing the fouling levels as they are representing the 

customer comfort. Therefore, the test conditions and the categorized levels, e.g., Zone 

0 to 8, show the customer comfort levels. The higher the heat transfer rate, the higher 

the customer would achieve the desired comfort. Thus, the comfort is decreasing while 

the fouling is increasing. The zone categorization shown in Figure 2.6, is representing 

the comfort levels corresponding the zones. Zone 0, as Test 1 and 10, indicates the 

zero-hour performance of the PHEs, i.e., there is no fouling on plate surfaces. The 

customer comfort and heat transfer rate are at maximum in Zone 0; thus, the 

categorized region is named full comfort. While the fouling is increasing, the comfort 

loss starts. In Zone 1 and 2, the status of fouling is represented as mostly comfort 

region. Here, there are unnoticeable effects on the heat transfer rate by customer yet. 

The 3rd region is named partial comfort loss which is associated with Zone 3 and 4. 

Here, customer may notice a lack of heat transfer rate. There may not have the same 

performance to heat the DHW when compared to the zero-hour performance anymore. 

In the 4th region, there are serious comfort loss corresponding to Zone 5 and 6, that 
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customers can notice. Here, the performance of PHE is likely to be affected seriously 

by fouling on plate surfaces. In the last region, partial clogging is expected in the plates 

of PHE that can affect the heat transfer rate extremely. In this point, the PHE might 

need to change not to affect and prevent the required customer comfort and it is 

represented with the categorized Zone 7 and 8. 

 

Figure 2.6: The zone categorization of customer comfort regarding fouling 

 

2.3.2 Data Importing 

During classification, the algorithm should find the target class for a new data sample 

that is not categorized yet, given a set of training data and corresponding training 

classes [25]. The classification process has two steps. One is training and the second 

one is the testing step. In the training step, a model is constructed from the training 

data that is generated from the experiments. In the testing step, the constructed model 

is used to classify the test data which is taken from experiments also.  

The experiment data is imported into the programming platform called MATLAB. The 

classification process is conducted in the Classification Learner App inserted in 

MATLAB. Classification Learner App is used for training the models with given 

training data to classify new data, i.e., supervised machine learning. Here in the app, 

the validation schemes, models to be trained and result assessment tools have existed. 
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The data splitting for training and testing data has crucial points. During this splitting 

process, the k-fold cross validation technique is used. The k-fold cross validation 

technique is commonly used for avoiding overfitting or underfitting. The k-fold cross 

validation splits the data into k number subsets, i.e., folds, in equal size. In each fold, 

one part of data is used to train the model, and the other part of the data is used to test 

the model. And in each fold, the testing data part is another 20% parts of the main data. 

The partition of data by k-fold cross validation techniques is shown in Figure 2.7. Each 

fold runs and obtains a learning accuracy for each fold. The final prediction accuracy 

of the used model is calculated by averaging the learning accuracies obtained for each 

fold. The fold number, k, is chosen as 5 in this study. 

 

Figure 2.7: The k-fold cross validation representation 

2.3.3 Model Training  

Each classification model is unique with its strength and weaknesses regarding the 

case where it would be used. Choosing the right model generally requires a trial and 

error method to get the balance of performance and accuracy. Therefore, 3 models, 

Naïve Bayes, decision tree, and k-nearest neighbors are chosen in this study to 

investigate their performance and accuracy.  

The Naive Bayes classifier is a straightforward probabilistic classifier that uses the 

Bayes theorem along with strong (naive) independence assumptions. The Bayes 

theorem is used to obtain the posterior probability within the Naïve Bayes classifier. 

The posterior probability is the probability of which class a particular data may belong 

to, while the probability of selecting a particular data from a class is called prior 

probability. In the training step of Naïve Bayes, with the given class and data, first, the 



28 

 

prior probabilities are calculated, then the posterior probability will be the output for 

possible classes. If we assume the classes, in this study, are named zones, are denoted 

as y and the features (predictors) are denoted as x. The main task in Naïve Bayes 

classification is giving the posterior probability, i.e., the probability of which y, a x 

may belong, using the Bayes theorem shown in Equation (2.28) [25]. Here the k 

denotes the random variable corresponding to classes (y), j denotes the random 

variable corresponding to predictors (x), p denotes the number of predictors (x), and K 

denotes the number of classes (y). 𝑃(𝑦 = 𝑘|𝑥1, ⋯ 𝑥𝑃) denotes posterior probability, 

while 𝑃(𝑥𝑗|𝑦 = 𝑘) denotes prior probability. 𝑃(𝑦 = 𝑘) denotes the marginal 

probability which is the probability of selecting the class among the total classes. 

 
𝑃(𝑦 = 𝑘|𝑥1, ⋯ 𝑥𝑃) =

𝑃(𝑦 = 𝑘) ∏ 𝑃(𝑥𝑗|𝑦 = 𝑘)
𝑝

𝑗=1

∑ 𝑃(𝑦 = 𝑘) ∏ 𝑃(𝑥𝑗|𝑦 = 𝑘)
𝑝

𝑗=1

𝐾

𝑘=1

 
(2.28) 

Naïve Bayes classifier is a model that has high bias and low variance characteristics. 

High bias refers to the error between the real class and variance refers to the ability to 

achieve approximate accuracy with different training sets. This characteristic of Naïve 

Bayes classifier provides decreasing in risk of inaccurate predictions but has the 

probability of not properly matching the data set to the model. The Naïve Bayes model 

is supported by various distributions in Classification Learner App. The kernel 

distribution is selected. Therefore, after that the chosen model would be named Kernel 

Naïve Bayes in this study. The kernel distribution is a function that is used in non-

parametric estimations. Non-parametric estimators do not have a defined structure and 

rely on all data points to conclude. To see if the performance of the algorithm that 

would be placed in a combi-boiler during operation in real life would be sufficient or 

not with independently read parameters, the kernel distribution is used. There are 

several kernel functions that MATLAB provides as inaccessible content. In this study, 

triangle named kernel distribution is used. 

Decision trees are used for both classification and regression. Here the usage of the 

decision tree algorithms is determined as classification. This model also can be called 

as classification tree. A decision tree can be considered as a predictor that predicts the 

class corresponding to an instance data by partitioning the given training data into the 
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labeled data. It is shown as a road from root to leaf and nodes in between. An example 

of a decision tree can be seen in Figure 2.8. At each node on the paths, a selection of a 

response according to the condition is generated until it reaches the final classified 

leaf. The classification decision trees are binary. So, each step in a prediction, checking 

the condition and deciding a response as 1 for true or 0 for false are involved in the 

process [26].  

 

Figure 2.8: Decision tree example and tree designation 

During the classification process, many algorithms is used to determine the creation of 

the tree. CART (Classification and Regression Trees) is used in this study as 

mentioned due to classification output being required. The second step that has crucial 

impact on the creation of the tree, is determining the attributes. There are various 

attribute selection techniques, i.e., splitting criterion, the Gini index which is used in 

this study is quite popular in the literature [27]. A decision tree determines how to split 

nodes either according to impurity or node error. The Gini index is based on impurity. 

A node with only one class, i.e., a pure node, has a Gini index of 0, while other nodes 

are having a positive Gini index. Thus, the Gini index would be a measure of node 

impurity. The impurity The Gini index splitting criterion can be expressed as the error 

that would be encountered if each item were categorized at random using the 

probability distribution of class labels within each subgroup [25]. The Gini index can 

be found as shown in Equation (2.29). Here, for any node x and class y, with total class 

number k, 𝑝𝑦(𝑥) denotes the probability of an instance being classified to a particular 

class [28]. 
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 𝐺𝑖𝑛𝑖(𝑥) = 1 − ∑ (𝑝𝑦(𝑥))
2𝑘

𝑦=1
 (2.29) 

The k-nearest neighbors (kNN) classifier model provides a label based on the dominant 

class in the region, i.e., neighborhood, by locating a cluster of k training set objects 

that are closest to the test data. The two fundamental elements of this approach are a 

distance metric to estimate distance between objects and the number of nearest 

neighbors which is denoted as k to classify unlabeled data. To determine its nearest-

neighbor list, 𝐼𝑧, the kNN model calculates the similarity distance between a training 

set, (𝑥, 𝑦) ∈ 𝐼, and test data, 𝑧 = (𝑥̂, 𝑦̂). Here, x represents the training instance, and y 

represents the corresponding class, while 𝑥̂ and 𝑦̂ represent the test instance and its 

class, respectively. The algorithm can be shown in the steps listed below [27]: 

- Import training set (𝑥, 𝑦), and testing set 𝑧 = (𝑥̂, 𝑦̂) as inputs. 

- Calculate the distance 𝑑 = (𝑥̂, 𝑥), between each instance in training data and 

testing data. 

- Select the nearest neighbor list, 𝐼𝑧 ⊆ 𝐼, which is the set of k closest training 

instances to testing instances, z. 

- Compute the output, i.e., the testing classes which are the target, 𝑦̂, by using 

Equation (2.30). 

 𝑦̂ = 𝑎𝑟𝑔𝑣𝑚𝑎𝑥 ∑ 𝐹(𝑣 = 𝑦𝑖)

(𝑥𝑖,𝑦𝑖)∈𝐼𝑧

 (2.30) 

Here in Equation (2.11), 𝐹(𝑣) will be resulted as 1 if the argument, v, is true and 0 

otherwise. The v is the class label [27]. The operation of the kNN model highly 

depends on the k number selection, which is mentioned in the third step of the process. 

Choosing the k number as 1, results in 0 error and 100% accuracy, due to it being 

classified as itself [29]. This is not a required solution. By choosing this, the model 

will be overfitted to the training and the trialed test set and provides a very low, nearly 

zero bias. This results in an increase in the dependence of the model on the selected 

test and training data set, i.e., the variance of the model will be too high. The optimal 

result of the model that is tried to be achieved is high bias but low variance 



31 

 

characteristic. To obtain this required solution by kNN model, the k number should be 

increased [29].  

 

(a) k=1                                                          (b) k=15 

Figure 2.9: Voronoi diagram of kNN algorithm for k=1 and k=15 [30] 

As can be seen in Figure 2.9, the kNN model sets the nearest neighbor list according 

to k number. The shown orange and blue classes are classified by kNN algorithm for 

k=1 and k=15 in Figure 2.9. As mentioned, when the k number is selected as 1, the 

classes are distinguished as too specific to the training data, whereas when the k 

number is selected as higher than 1, the bias is increasing yet the variance, i.e., 

sensitivity to the training set is decreasing. But at one point, if k is selected as too large, 

the model will underfit the training data, i.e., the bias will be too high that cannot fit 

almost the training data at all [31]. In this study the k number is chosen as 10.  

In the mentioned process step, which is computing the k closest training data points to 

testing data, the closeness can be quantified with distance functions. The Euclidean 

distance is used. As it is mentioned in the second step of the process, the distance d is 

calculated by the Euclidean distance method, which is just computing the tangent 

distance between each test data instance and each training data instance. The Euclidean 

distance is calculated by using the basic expression shown in Equation (2.31) [30]. 

 𝑑𝑖 = ‖𝑥𝑖 − 𝑥̂𝑖‖ (2.31) 
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Chapter 3 

Results and Discussion 

3.1 Experiment Results 

The 30 and 32 plates PHEs are tested by measuring pressure drops and outlet 

temperatures of both channels, CH and DHW whereas inlet temperatures and volume 

flow rates are given as input. The results are grouped as shown in the cases listed in 

Table 2.2. As given in Table 2.2., there are 3 different groups for responses, Zone 0 to 

Zone 8 grouping, grouping zones by 2 and clogging percentages grouping. These 

response cases are rearranged by normalizing the data. For Zone 0 to 8 grouping, the 

zones are considered as time as they are the representation of fouling and clogging by 

time. So, the zones are normalized between 0 to 1. The procedure is applied to the 

other response grouping cases as well. 

During experiments, 300-500 pieces of data are acquired for each test. The results data 

that is obtained from each test condition are grouped as same and represented in Figure 

3.1 and 3.2 as a data group colored in the same. In Figure 3.1 the experiment results of 

30 and 32 plates are represented. As expected, while the clogging plate number that is 

simulated with tests is increasing (shown in normalized time), the CH outlet 

temperature is increasing while the DHW output temperature is decreasing. The 

increase of CH outlet temperature is a demonstration of decreasing heat transfer. The 

heat that the CH inlet flow has cannot be transferred as in the zero-hour performance. 

Similarly, the DHW output has not gained the heat as in the zero-hour performance 

which is the reason gives the lack of comfort to customers. While fouling and clogging 

are increasing, the layer of fouling creates hedges to the flow. This results in an 

increasing pressure drop. The pressure difference results show the expected increase 

while clogging levels are increasing. 
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Figure 3.1: The experiment results of 32 and 30 plates PHEs in normalized time; a) 

DHW outlet temperature, b) CH outlet temperature, c) pressure drop of DHW 

channel, d) pressure drop of CH channel. 

The overall heat transfer coefficient for each data is calculated as in Equation (2.7). 

The results are shown in Figure 3.2 and 3.3 for 32 and 30 plates PHEs, respectively. 

The decreasing trend is a representation of the decreasing heat transfer as expected. 

The overall heat transfer coefficients of 32 plates are larger than the coefficients of 30 

plates as shown in the graphs.  

 

Figure 3.2: The calculated overall heat transfer coefficient for 32 plates PHE in the 

normalized time scale 
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Figure 3.3: The calculated overall heat transfer coefficient for 30 plates PHE in the 

normalized time scale 

During the fouling resistance coefficient evaluation, the required convection heat 

transfer coefficient calculation is carried out by using the Sieder-Tate Nusselt number 

correlation, as shown in Equation (3.1) [32]. This Nusselt correlation can be used when 

the conditions are given in Equation (3.2), (3.3) and (3.4) [32]. The Prandtl number, 

Reynolds number and dynamic viscosities are given in Table 3.1. The value of the 

length of the plate over the hydraulic diameter is 54.5 for 32 and 30 plates PHEs. 

 𝑁𝑢 = 0.27𝑅𝑒0.8𝑃𝑟1/3(𝜇𝑓 𝜇𝑤⁄ )0.14 (3.1) 

In Equation (3.1), The Nu represents the Nusselt number, Re is the Reynolds number, 

Pr is the Prandtl number, 𝜇𝑓 is the dynamic viscosity of the fluid at fluid film 

temperature, i.e., water and 𝜇𝑤 is the dynamic viscosity of the fluid at wall 

temperature, i.e., plate. The wall and initial temperatures are accepted as the same as 

the cold channel water inlet temperature when the model is structured. The film 

temperature is calculated by taking the average of the cold channel and hot channel 

inlet temperatures.  

 0.7 ≤ 𝑃𝑟 ≤ 16 (3.2) 

 𝑅𝑒 ≥ 10,000 (3.3) 
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 𝐿/𝐷 ≥ 10 (3.4) 

Table 3.1: The properties of the hot and cold channel 

  

Hydraulic 

diameter 

(m) 

Reynolds 

Number 

Prandtl 

Number at 

the film 

temperature 

Dynamic 

viscosity 

(Pas) at the 

film 

temperature 

Dynamic 

viscosity 

(Pas) at 

plate 

temperature 

32 

Plates 

PHE 

Hot 

channel 
0.0035 2.7x105 4.495 0.652x10-3 1.306x10-3 

Cold 

channel 
0.0035 1.6x105 4.495 0.652x10-3 1.306x10-3 

30 

Plates 

PHE 

Hot 

channel 
0.0035 2.3x105 4.495 0.652x10-3 1.306x10-3 

Cold 

channel 
0.0035 0.9x105 4.495 0.652x10-3 1.306x10-3 

The Reynolds number is calculated by Equation (3.5). The 𝜌 denotes the density, 𝑉 

denotes the velocity of fluid, 𝐷ℎ denotes the hydraulic diameter, and 𝜇 denotes the 

dynamic viscosity of fluid. The density and dynamic viscosities are taken at film 

temperature. The velocities are derived from the volume flow rates which are 

calculated by using the geometric properties of PHEs and mass flow rates. The 

hydraulic diameter is calculated by Equation (3.6), where 𝐴𝑐 is cross-sectional area 

and p is the wetted perimeter of channel. The hydraulic diameter and relatively 

Reynolds number are calculated for both hot and cold channel of 32 and 30 plates 

PHEs, as shown in Table 3.1. 

 𝑅𝑒 =
𝜌𝑉𝐷ℎ

𝜇
 (3.5) 

 𝐷ℎ =
4𝐴𝑐

𝑝
 (3.6) 
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After calculating the Reynolds number and with known Prandtl number and dynamic 

viscosities the Nusselt numbers are calculated by using Equation (3.1), the values of 

its given in Table 3.2. 

Table 3.2: The Nusselt number calculated by correlation for hot and cold channel 

 Nu calculated analytically by correlation 

 32 Plates 30 Plates 

Hot channel 8.91x103 7.85x103 

Cold channel 6.12x103 3.88x103 

The convection heat transfer coefficients are calculated by Equation (3.7) where the k 

is thermal conductivity of fluid and 𝐷ℎ is hydraulic diameter. The thermal conductivity 

of fluid is taken at film temperature. The convection coefficients that are calculated 

analytically by Nusselt number correlation are listed in Table 3.3.  

 ℎ =
𝑁𝑢𝑘

𝐷ℎ
 (3.7) 

Table 3.3: The convection heat transfer coefficients 

 Convection heat transfer coefficient 

calculated analytically (W/m2K) 

 32 Plates 30 Plates 

Hot channel 1.01x106 1.41x106 

Cold channel 1.60x106 0.69x106 

After the convection heat transfer coefficients are calculated, the conduction 

coefficient of plate is also calculated as designated in Equation (2.8). The found result 

is 0.00022 W/mK. 

The fouling resistance coefficients that are calculated are shown in Figure 3.4 and 3.5 

for 32 and 30 plates PHEs, respectively. As expected, when the decreasing overall heat 

transfer coefficient is considered while the fouling is increasing, the fouling resistance 
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coefficients are increasing. These data are also represented in the normalized time 

scale as it is in the representation of the overall heat transfer coefficient. 

 

Figure 3.4: The calculated fouling resistance coefficients of 32 plates PHE 

 

Figure 3.5: The calculated fouling resistance coefficients of 30 plates PHE 

The reference study evaluated by Zhang et.al. shows the result of the fouling resistance 

values with time [6]. The used method to create the fouling environment in PHEs is 

adding the particulates into the test rig. Therefore, an accelerated fouling effect 

observation is carried out in the study. There are two types of fouling tested, one is 

particulate fouling which only the Al2O3 accumulation is observed and the other one 

is composite fouling which the CaCl2 and NaHCO3 precipitation is observed together 

with Al2O3. In both tests, the fouling resistance results show both the asymptotic 
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increasing and parabolic increasing. The fouling resistance coefficients in this study 

show a similar increase to the results shown in the study of Zhang et.al [6]. However, 

the fouling resistance values show differences between the referenced study and this 

study. The average of the calculated fouling resistance values is approximately 2x10-6 

m2K/W, while the magnitudes of fouling resistance coefficients in the referenced study 

are the value times 10-4. This difference originated from the test method differences 

between the studies. The accelerated fouling test shows a much larger accumulation 

and lack of heat transfer than the results found from the generated artificial fouling test 

method in this study. 

3.2 Numerical Model Results 

The model is structured in MATLAB, by using Runge Kutta 4th order method as 

mentioned. The Runge Kutta 4th order method is referenced from the study by Bobic 

et al. [33]. Therefore, once the model is created, the parameters are used to validate 

the model with a reference study. The temperature of the hot channel inlet is given in 

referenced study as 52.4°C and temperature of the cold channels is given as 18.5°C. 

Both hot and cold channel have the same mass flow rate, which is 0.113 kg/s. The 

initial temperature of the plate is assumed as the same temperature as the cold channel 

inlet temperature. The step time of model is stabilized by running the model for the 

parameters of the volume elements number. 

In the reference study of the model results obtained [33], the published hot channel 

temperature distribution was seen to have similar behavior. For the initial and 

boundary conditions used in the reference study given above, it was reported that the 

system reached stable conditions within 5 seconds after starting from the initial status 

of the system and the hot channel output temperature was approximately 27 ° C in the 

experimental results performed with the thermal camera [33]. In the validation study, 

the hot channel outlet temperature for the same time was found to be 29 ° C (Figure 

3.6). Time-dependent temperature distribution is compatible with the model results. 

As a result, reached steady state status is a parameter indicating the accuracy of the 

model (Figure 3.7). In the validation of the reference study, the time-related graph and 

location of the hot and cold channel temperatures obtained were given (Figure 3.8). 

The number of locations indicated in Figure 3.8 on the Y axis is determined by leaving 
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the cell with the starting limit and the graph was formed. According to this validation 

study, it was concluded that the model runs correctly. 

 

Figure 3.6: Temperature distribution of hot channel inlet and outlet by time in 

validation of reference study 

 

Figure 3.7: Heat transfer rate change by time of hot and cold channel in validation of 

reference study 
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(a) 

 

(b) 

Figure 3.8: Temperature distribution of a) hot and cold channel by time, b) hot and 

cold channel, and plate by position 
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After validation study, the parameters of PHEs have 32 and 30 plates applied to the 

model. In the first part of the study, the healthy conditions were examined by using the 

32 and 30 plate PHEs flow rates and inlet temperatures. As in the validation study, 

steady state status is reached as shown in Figure 3.9 and 3.10 for 32 and 30 plate PHE, 

respectively. 

 

Figure 3.9: Heat transfer rate change by time for 32 plates PHE 

 

Figure 3.10: Heat transfer rate change by time for 30 plates PHE 
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Different Nusselt number correlations are used to create the optimum model that gives 

similar results when it is compared with the test results. The used Nusselt number 

correlations are given in Table 3.4. Nusselt number correlation 1 is derived from 

Nusselt number correlation 3 [32] to obtain the optimum model results. The correction 

factors are changed due to different Reynolds number values of hot and cold channels.  

Table 3.4: The Nusselt number correlations and corresponding convection heat 

transfer coefficients used in the model 

  

Nusselt number correlations 

Convection heat 

transfer coefficient 

(W/m2K) 

 
 32 Plates 

PHE 

30 Plates 

PHE 

1 

Hot 

channel 𝑁𝑢ℎ = 0.15𝑅𝑒0.8𝑃𝑟
1
3(

𝜇𝑓
𝜇𝑤

⁄ )0.14 
8.9x105 7.8x105 

Cold 

channel 𝑁𝑢𝑐 = 0.08𝑅𝑒0.8𝑃𝑟
1
3(

𝜇𝑓
𝜇𝑤

⁄ )0.14 
3.26x105 2.1x105 

2 

Hot 

channel 
𝑁𝑢 = 0.023𝑅𝑒0.8𝑃𝑟0.3 

1.4x105 1.26x105 

Cold 

channel 

0.98x104 6.23x104 

3 

Hot 

channel 

𝑁𝑢 = 0.27𝑅𝑒0.8𝑃𝑟
1
3(

𝜇𝑓
𝜇𝑤

⁄ )0.14 

1.6x106 1.4x106 

Cold 

channel 

1.1x106 6.9x105 

4 

Hot 

channel 
- 59430 58703 

Cold 

channel 

The 2nd case of Nusselt number correlation is commonly used Dittus-Boelter Nusselt 

number correlation [32]. In the 4th case, the convection heat transfer coefficients that 

are taken from CFD simulations are used. The CFD simulations were carried out as a 

background study in Bosch Thermotechnology. The details of the study would not be 

appropriate to be shared due to the legislation of the patent taken by the company itself. 
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The convection heat transfer coefficients are calculated as an average area weighted in 

3D CFD simulations of whole body of PHE. The results of the used correlations are 

represented in Figure 3.11 and Figure 3.12. The outlet temperature of the hot and inlet 

channel is depicted in the figures. The 3rd case, Dittus-Boelter Nusselt number 

correlation, shows similar outputs with test results. However, the derived Nusselt 

number correlation, 1st case, shows better results with the test results. The outermost 

result is seen in the 4th case, when the convection heat transfer coefficients taken from 

CFD results are used. The 1st case results are similar for 32 and 30 plates PHEs. 

Therefore, the derived Nusselt number correlations are selected to be used for the 

further model calculations.  

  

Figure 3.11: The Nusselt number correlation comparison for 32 plates PHE 

After selection of the optimum Nusselt number correlation, the model results for 

healthy conditions are shown in Figure 3.13, 3.14, 3.15, 3.16, 3.17 and 3.18. The 

temperature distribution of wall (plate), hot and cold channels are shown. Again, the 

outlet temperatures of hot and cold channels from test results are indicated in the 

figures. The results show that the model can give compatible temperature distribution 

evaluation with test results for 32 and 30 plates PHEs. 
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Figure 3.12: The Nusselt number correlation comparison for 30 plates PHE 

 

Figure 3.13: The temperature distribution of hot, cold channels and wall by position 

for 32 plates PHE 
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Figure 3.14: The temperature distribution in contour of hot, cold channels and wall 

by position for 32 plates PHE 

 

Figure 3.15: The temperature change of hot and cold channels by time for 32 plates 

PHE 
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Figure 3.16: Temperature distribution of hot and cold channels by position for 30 

plates PHE 

 

Figure 3.17: Temperature distribution in contour of hot and cold channels by position 

for 30 plates PHE 
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Figure 3.18: The temperature change of hot and cold channels by time for 30 plates 

PHE 

In the results, the stabilization of the outlet temperatures is achieved less than 2 

seconds. Therefore, the final time is selected as 2 seconds even though the cell size is 

selected as 10 as in the reference study. Considering the time step, flow and number 

of cells, the compatibility of the fluid in a time step was taken into consideration and 

the time step was selected as 0.01 seconds. 

As a second validation, the model results were compared with the test results. The 

outlet temperatures of the hot and cold channels from test results and model results are 

also given in Table 3.5 for 32 and 30 plate PHEs. The cold channel (DHW) temperature 

for both types PHEs is closer than the hot channel (CH) temperatures for 32 plates of 

PHE, in contrast to the results of 30 plates of PHE. The errors are lower than 2%, 

therefore they are considered acceptable. As a result of the second validation, the 

model is considered as correct.  
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Table 3.5: The comparison of model and test results 

 32 plate PHE 30 plate PHE 

 Model 

Results 

Test 

Results 

Error 

(%) 

Model 

Results 

Test 

Results 

Error 

(%) 

Hot 

channel 

outlet 

temperature 

45.6 °C 44.8 °C 1.78 50.6 °C 50.9 °C 0.58 

Cold 

channel 

outlet 

temperature 

52.2 °C 51.9 °C 0.57 61.4 °C 60.8 °C 0.97 

In the second part of the modeling study, the fouling resistance coefficients are used. 

The calculated fouling resistance coefficients from experiments are used in the model 

as shown in Equation (2.22) and (2.23). The main goal is validating the model accuracy 

for PHEs when the fouling resistance coefficients are taken into consideration. The 

expected result is that model should give the similar results to the experimental result 

based on the change in outlet temperatures caused by fouling. The model and test 

results are given in Figure 3.19 and 3.20 for 32 and 30 plates PHEs, respectively. 

 

Figure 3.19: Comparison of model and test results based on fouling resistance 

coefficients for 32 plates PHE 
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Figure 3.20: Comparison of model and test results based on fouling resistance 

coefficients for 30 plates PHE 

In the results of the comparison of the model and test results based on fouling 

resistance coefficients, normalized time is considered as before when the experimental 

results are given. As in the comparison of the model and test results for faulty 

conditions, the hot channel (CH) temperatures are closer than the cold channel (DHW) 

temperatures. For 32 plate PHE, the hot channel model results are significantly close 

to the testing results. The difference in the worst case is lower than 2°C. This tolerance 

is considered acceptable and enough to evaluate that the model is running correctly. 

The cold outlet temperature is the determining factor for customer comfort in combi-

boiler appliances. The cold outlet temperature change during fouling for 32 and 30 

plates PHE by normalized time is given in Figures 3.21 and 3.22. The indicated 

reference value of cold outlet temperature is the one that is representing the ideal case, 

where no fouling is seen. The cold outlet temperature should be within the tolerance 

of 1% as indicated in the figures with the reference value in case there is no fouling.  

The created model provides a calculation of the required CH (hot channel) temperature 

to achieve the reference cold channel outlet temperature. When the maximum fouling 

case that was evaluated (Zone8) is considered, the required hot channel inlet 
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temperatures to obtain the required cold channel outlet temperature by the customer as 

a setpoint are given in Figure 3.23 and 3.24.  

 

Figure 3.21: Change of cold channel outlet temperature during fouling for 32 plates 

PHE 

 

Figure 3.22: Change of cold channel outlet temperature during fouling for 30 plates 

PHE 
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Figure 3.23: Temperature distribution of the response of the hot channel to reach the 

required ideal cold channel temperature in case of maximum fouling for 32 plates 

PHE 

 

Figure 3.24: Temperature distribution of the response of the hot channel to reach the 

required ideal cold channel temperature in case of maximum fouling for 30 plates 

PHE 
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The existence of the fouling layer on the plate surfaces causes a decrease in customer 

comfort. Reaching the required setpoint of DHW defined by the customer needs more 

energy when there is fouling. This leads to an increase in energy consumption, i.e., 

natural gas consumption. The required additional power to reach the setpoint when 

there is maximum fouling is calculated.  

The setpoints for 32 and 30 plates are selected from the test outputs (Table 3.4). As 

shown in Figures 3.23 and 3.24, CH inlet temperature should be 81 and 77 °C to reach 

the setpoints that are 51.9 and 60.8 °C at maximum fouling case. The appliance should 

heat up the water in the heat cell (primary heat exchanger) up to these temperatures to 

reach the required setpoint temperature in DHW. The required additional power is 

calculated for 32 and 30 plate PHEs. The maximum required additional powers are 

shown in Table 3.6. The power changes by fouling, i.e., fouling zones, are shown in 

Figure 3.25 and 3.26 for 32 and 30 plates PHEs, respectively. 

Table 3.6: The comparison of model and test results 

 

Assumed 

setpoint of 

DHW outlet 

temperature 

(required) 

(°C) 

DHW outlet 

temperature 

at maximum 

fouling 

(model 

results) (°C) 

CH inlet 

temperature 

in case no 

fouling (°C) 

CH inlet 

temperature 

to reach the 

setpoint at 

maximum 

fouling 

(response) 

(°C) 

Additional 

required 

power to 

reach the 

setpoint at 

maximum 

fouling 

(kW) 

32 

Plates 

PHE 

51.9 47.1 72 81 16 

30 

Plates 

PHE 

60.8 57.3 72 77 7 

The heat output when there is no fouling is approximately 50 kW for 32 and 35 kW 

for 30 plates PHE. With the additional required power, the heat outputs to reach the 

setpoint in case of maximum fouling are 66 and 42 kW for 32 and 30 plates PHEs, 

respectively. The amount of natural gas consumption is approximately 0.5 m3/h for 50 

kW appliances and 0.35 m3/h for 35 kW appliances. The required natural gas 

consumption to reach the setpoint in case maximum fouling would be 0.66 and 0.42 
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m3/h for 32 and 30 plates PHEs, respectively. The price of 0.1 m3/h natural gas is 2.6₺ 

as of 01.10.2022 from Enerji Piyasaları İşletme A.Ş. (Energy Market Operation Inc.). 

Therefore, the additional costs are 83.2 and 36.4 ₺ for 32 and 30 plates PHEs, 

respectively. 

 

Figure 3.25: Change of additional required power to reach the setpoint by fouling in 

normalized time for 32 plates PHE 

 

Figure 3.26: Change of additional required power to reach the setpoint by fouling in 

normalized time for 30 plates PHE 
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3.3 Algorithm Results 

The three algorithms, Naïve Bayes, k-nearest neighbors and decision tree models are 

applied to each case listed in Table 2.2. In each case, the training set and testing set is 

selected with k-fold cross validation to avoid overfitting as mentioned in 2.2.2. The 

main results are calculated as accuracy. The data implementation and model training 

processes are evaluated in the Classification Learner App in MATLAB programming 

tool as shown in Figures 3.27 and 3.28. During data implementation, the features, i.e., 

predictors are in the type of double integer while the responses are in the type of 

categorized data. Thus, the application can distinguish the training predictors data and 

corresponding training classes as can be seen in Figure 3.27.  

The classified training data for Case 1 is shown in a scatter plot in Figure 3.29, where 

the DHW outlet temperature is on x-axis and CH outlet temperature is on y-axis. The 

distribution of the training data shows the distinguishability of the training set.  

 

Figure 3.27: The data implementation in Classification Learning App in MATLAB. 
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Figure 3.28: The model training process in Classification Learning App in 

MATLAB. 

 

Figure 3.29: The training data distribution shown in DHW outlet temperature vs. CH 

outlet temperature of Case 1. 
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Figure 3.30: The training data distribution shown in DHW inlet vs. outlet 

temperature of Case 1. 

In Figure 3.29, the data can be separated easily, in contrast to Figure 3.30, where the 

DHW inlet and outlet temperature distribution is shown. The zones, i.e., training 

classes are not very easily distinguishable when it is compared to Figure 3.29. This 

inference results in the generation of other cases, to see the difference between the case 

with selected all parameters and the case with selected fewer parameters.  

For Case 1, three algorithms are applied with different features are shown with the 

accuracies in Table 3.7. For the decision tree model, Gini’s Index is used as a split 

criterion and four different maximum number of splits are applied. As can be seen in 

Table 3.7, there is no difference between the accuracies even the maximum numbers 

of splits are changed. 
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Table 3.7: The accuracies of Case 1 according to model features 

Models Features Accuracy (%) 

Decision Tree  

(Split criterion=Gini’s Index) 

 

Maximum number of 

splits=100 
99.0 

Maximum number of 

splits=85 
99.0 

Maximum number of 

splits=50 
99.0 

Maximum number of 

splits=25 

 

99.0 

 

Kernel Naïve Bayes 

(Kernel type=Triangle) 

 

Support=Positive 99.9 

Support=Unbounded 

 

99.9 

 

k-nearest neighbors 

(Distance metric=Euclidean) 

Number of neighbors=1 99.5 

Number of neighbors=10 96.4 

Number of neighbors=15 95.1 

Number of neighbors=50 84.6 

 

The confusion matrix is used to show the detailed prediction accuracies of each class 

of a model. In Figure 3.31, the confusion matrix of the decision tree model for Case 1 

is shown. Here, the TPR indicates the true positive rates which is the rate of true 

predicted data overall data and FNR indicates the false negative rates which is 

similarly the rate of false predicted data overall data. When the overall accuracy of the 

decision tree model for Case 1 is considered as 99.0%, the FNR values are expected 

to be this small. The highest FNR value is seen in the prediction of 3rd class, i.e., Zone 

3. The model predicted the 2.9% data of Zone 3 as Zone 4. The model is successfully 

predicting the data from Zone 5 and Zone 8.  
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Figure 3.31: The confusion matrix of Decision Tree model for Case 1. 

The classification tree with nodes and leaves is given in Figure 3.32 for the maximum 

number of splits is 100. The algorithm trains itself by selecting the pressure difference 

of DHW for the main node. This shows that pressure difference data gives more precise 

distinguishability than the other predictors.  
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For the Kernel Naïve Bayes model, the “triangle” kernel type is selected. The Naïve 

Bayes model is trained based on the independence of predictors. However, both the 

support functions, positive indicates dependency and unbounded indicates 

independency, are applied and it is seen that the accuracy is not changed. This shows 

that Naïve Bayes model is valid for this case whether the predictors are independent 

of their or not.  

 

Figure 3.33: The confusion matrix of Kernel Naïve Bayes model for Case 1. 

In Figure 3.33, the confusion matrix of Kernel Naïve Bayes model is given. The overall 

accuracy for both features is obtained as 99.9% which results in overfitting. The data 

is successfully classified by the model except for Zone 2 and 7.  

The k-nearest neighbor model is applied with the various number of neighbors. The 

number of neighbors is selected as 1, 10, 15 and 50. The best accuracy is achieved 

while the number of neighbors is selected as 1. This results in when all parameters are 

used as predictors, the training data and test data would be similar and therefore the 

model is too much fitted to the training data, yet it is achieved to the highest accuracy. 

The model that has the lowest accuracy with the number of neighbors 50, is represented 
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in the confusion matrix in Figure 3.34. The highest FNR value is seen at Zone 3. The 

53.4% of data that classified as Zone 3 is predicted as Zone 2. The false prediction of 

data classified as Zone 3 is also seen in decision tree algorithm. When the data 

distribution in Figure 3.29 is considered, Zone 3 and Zone 2 have similar ranges, they 

are hard to be distinguished. Thus, the highest FNR values are seen between these 

zones. 

 

Figure 3.34: The confusion matrix of k-Nearest neighbor model for Case 1.  

For Case 2, as it is listed in Table 2.2, the overall heat transfer coefficient is used as a 

predictor, whereas the responses are kept the same as in Case 1, from Zone 0 to 8. The 

same features that are used for the models in Case 1 are applied to Case 2. In contrast 

with the achieved accuracies in the Decision Tree model for Case 1, the obtained 

accuracies of the decision tree model for case 2 are changing with a maximum number 

of splits. The highest accuracy is achieved for the decision tree model with a maximum 

number of splits of 25. Additionally, the lowest accuracy is seen for the Decision Tree 

Model with a maximum number of splits between 100 and 85.  
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Table 3.8: The accuracies of Case 2 according to model features 

Models Features Accuracy (%) 

Decision Tree  

(Split criterion=Gini’s Index) 

 

Maximum number of 

splits=100 
94.7 

Maximum number of 

splits=85 
94.7 

Maximum number of 

splits=50 
94.4 

Maximum number of 

splits=25 

 

95.8 

 

Kernel Naïve Bayes 

(Kernel type=Triangle) 

 

Support=Positive 95.7 

Support=Unbounded 

 

95.7 

 

k-nearest neighbors 

(Distance metric=Euclidean) 

Number of neighbors=1 94.1 

Number of neighbors=10 95.2 

Number of neighbors=15 95.3 

Number of neighbors=50 95.9 

 

The confusion matrix of the Decision Tree model with a maximum number of splits 

of 100 is given in Figure 3.35. The highest FNR value is encountered in Zone 6. The 

30.9% of data classified in Zone 6 is predicted as Zone 0. The accuracies of the 

decision tree model for case 2 are higher than for case 1. The classification tree of the 

model is given in Figure 3.36. Zone 0 distinguished from the others for 32 plates PHE 

as can be seen in the first node of the tree. However, the Zone 0 classification is 

proceeded through the below nodes. The reason for that is the overall heat transfer 

coefficients of 30 plates PHE that are classified as Zone 0 are similar to the overall 

heat transfer coefficients of 32 plates PHE that are classified as Zone 6. This similarity 
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in the data results in the observation of the highest FNR values between Zone 0 and 

Zone 6.  

 

Figure 3.35: The confusion matrix of the Decision Tree model for Case 2. 

The Kernel Naïve Bayes model gives the same result of accuracy with both features, 

as in Case 1. Whether the supporting function is selected to depict the independency 

or dependency, the accuracy is not changed, 95.7%. However, when the predictor is 

changed to the overall heat transfer coefficient, the accuracy decreases for Kernel 

Naïve Bayes model. The confusion matrix of Kernel Naïve Bayes model is given in 

Figure 3.37. Due to the closeness of the overall heat transfer coefficients of Zone 0 for 

30 plates PHE and Zone 6 for 32 plates PHE, the highest FNR value is also observed 

at this point. The 44.6% of data that is classified as Zone 6 is predicted by the model 

as Zone 6, whereas the 55.4% of data is predicted correctly. 

The k-nearest neighbor model is trained with the various number of neighbors, e.g., 1, 

10, 15 and 50. While the number of neighbors is increasing the obtained accuracy of 

the model is increasing too. The predictor data, the overall heat transfer coefficients, 

have more distinguishability characteristic than all parameters that are applied in Case 
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1. This can be an inference that the lowest accuracy is observed with 1 number of 

neighbors. When the k, the number of neighbors, is selected as 1, the model tends to  
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Figure 3.37: The confusion matrix of Kernel Naïve Bayes model for Case 2 

 

Figure 3.38: The confusion matrix of k-Nearest neighbor model for Case 2.  
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overfit the training set. Even the cross-validation method that is used, is preventing 

overfitting, if the test data is too similar to training data, in this case, if there is not any 

variance within the data, the model still can be overfitted. It is known that if the k is 

chosen as 1, this is the maximum fitting to the training data, i.e., indicates low bias. 

Even if the k number is 1, the lowest accuracy is observed. Thus, the inference can be 

the outcome that the variance within the overall heat transfer data is higher than the 

predictors of case 1. The highest accuracy observed for k number is 50. This shows 

that the k-nearest neighbor model achieved the required high bias- low variance 

characteristic.  

Similarly, with the other models, the Zone 0 and Zone 6 distinguishability problem is 

observed in k-nearest neighbor model predictions. 32.0% of the data classified as Zone 

6 is predicted as Zone 0. The FNR value of the k-nearest neighbor model is lower than 

the Kernel Naïve Bayes but slightly higher than the decision tree model.  

For Case 3, the overall heat transfer coefficients are used as predictors as in Case 2, 

with a difference in response groups. The responses are selected in Case 3 as grouping 

Zone 0 to 5 by 2, and Zone 6,7 and 8 as one group, as shown in Table 2.2. The only 

difference from Case 2 is the response groups. The accuracies of the models that are 

trained in Cases 1 and 2 are shown in Table 3.9.  

The decision tree model gives similar results to Case 2 even though the responses are 

different. Like in Case 2, the highest accuracy of the decision tree model is achieved 

with a maximum number of splits of 25. In addition, the accuracy variance within the 

decision tree model variations is small like Case 2. Thus, the decision tree model 

accuracies are merely dependent on the responses. 

The confusion matrix of the decision tree model with a maximum number of splits of 

50 is given in Figure 3.39. The FNR values are not larger than the ones that are 

observed in Case 2. The accuracies may be close, but the consistency of the model 

prediction is better for this grouping system method. The highest FNR value is 

obtained between Group 1 and 4. The 9.2% of data classified as Group 4 is predicted 

as Group 1, and the 1.8% of data classified as Group 4 is predicted as Group 2. This is 

added up to the total highest FNR value of 11.0%.  
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Table 3.9: The accuracies of Case 3 according to model features 

Models Features Accuracy (%) 

Decision Tree  

(Split criterion=Gini’s Index) 

 

Maximum number of 

splits=100 
94.6 

Maximum number of 

splits=85 
94.6 

Maximum number of 

splits=50 
94.4 

Maximum number of 

splits=25 

 

95.3 

 

Kernel Naïve Bayes 

(Kernel type=Triangle) 

 

Support=Positive 94.0 

Support=Unbounded 

 

89.1 

 

k-nearest neighbors 

(Distance metric=Euclidean) 

Number of neighbors=1 94.4 

Number of neighbors=10 95.5 

Number of neighbors=15 95.4 

Number of neighbors=50 95.9 

 

Figure 3.39: The confusion matrix of the decision tree model for Case 3. 
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In Figure 3.40, the classification tree of the decision tree model is represented. In 

similar with Case 2, Group 1 is generating the main node branch distinction, as can be 

seen in Figure 3.40. Through the below branches, it is observed that Group 1, and 

Group 4 classification branches are similar. This results in the model has difficulty 

distinguishing Group 1 and Group 4, similar to Zone 0 and Zone 6 as in Case 2.  

 

Figure 3.41: The confusion matrix of Kernel Naïve Bayes model for Case 3. 

The Kernel Naïve Bayes model gives a similar result to Case 2 for the condition that 

the support function is applied as positive. However, when the support function is 

chosen as unbounded, the accuracy is considerably lower than Case 2.  

The confusion matrix of the Kernel Naïve Bayes model with unbounded support 

function is given in Figure 3.41. The highest FNR value is obtained between Group 2 

and Group 4, differently from the decision tree model. The 39.4% of data classified as 

Group2 is predicted as Group 4. 

Similarly, the k-nearest neighbor model gives close results to Case 2. It can be deduced 

that the higher accuracy is achieved with a higher k number for Case 2 and 3. Like in 

Case 2, the k-nearest neighbor model is overfitted with the selection of the k number 

as 1. Thus, the lowest accuracy is observed for this variation of the k-nearest neighbor 
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model while the model achieves the high bias and low variance characteristic with the 

selection of k number as 50 for Case 3, as in Case 2.  

The confusion matrix of the k-nearest neighbor model for Case 3 with the k number as 

15 is given in Figure 3.42. The highest FNR value is obtained between Group 1 and 

Group 4, similar to the decision tree model. The 10.4% of data classified as Group 4 

is predicted as Group 1, and the 1.8% of data classified as Group 4 is predicted as 

Group 2, also similar to the decision tree model prediction.  

 

Figure 3.42: The confusion matrix of the k-nearest neighbor model for Case 3. 

For Case 4, the same predictor, the overall heat transfer coefficient is applied to Case 

2 and 3. In difference, the response group is selected as a representation of clogging 

percentages. The accuracies of the same models applied to the other cases are 

represented in Table 3.9. 

The decision tree model again gives similar results to Case 2 and Case 3. The highest 

accuracy, 95.5% is achieved by selecting the maximum number of splits as 25 as it is 

in Case 2 and 3. This shows the decision tree model is considerably dependent on the 

predictor, not the responses. 
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Table 3.10: The accuracies of Case 4 according to model features 

Models Features Accuracy (%) 

Decision Tree  

(Split criterion=Gini’s Index) 

 

Maximum number of 

splits=100 
94.8 

Maximum number of 

splits=85 
94.8 

Maximum number of 

splits=50 
94.7 

Maximum number of 

splits=25 

 

95.5 

 

Kernel Naïve Bayes 

(Kernel type=Triangle) 

 

Support=Positive 95.0 

Support=Unbounded 

 

89.7 

 

k-nearest neighbors 

(Distance metric=Euclidean) 

Number of neighbors=1 94.5 

Number of neighbors=10 95.3 

Number of neighbors=15 95.3 

Number of neighbors=50 95.7 

 

Figure 3.43: The confusion matrix of the decision tree model for Case 4. 
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In Figure 3.43, the confusion matrix of the decision tree model with the selection of a 

maximum number of splits of 100 is represented. The response groups are named P1 

to P5. The highest FNR value is obtained between the P4 and P1 classes. The 16.2% 

of data classified as P4 is predicted as P1. The similarity between the overall heat 

transfer coefficients of 30 plates PHE classified in P1 with the overall heat transfer 

coefficients of 32 plates PHE classified in P4, results in this high false prediction rate, 

as in Case 2 and Case 3.  

The classification tree of the decision tree model for Case 4 is given in Figure 3.44. 

Similar to Case 2 and 3, the P1 group generates the distinction of the main node. It is 

observed that it the difficulty to classify the P1 and P4, as represented in the confusion 

matrix, Figure 3.43. 

 

Figure 3.45: The confusion matrix of Kernel Naïve Bayes model for Case 4. 

The Kernel Naïve Bayes model also gives similar result to Case 2 and 3. The predictors 

have more role in model predictions than the response groups. The highest accuracy, 

95.0% is achieved by selecting the support function as positive. The model variation 

gives smaller results with the selection of unbounded support function, with 89.7% of 

accuracy.  
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In Figure 3.45, the confusion matrix of Kernel Naïve Bayes with the selection of an 

unbounded support function is represented. The highest FNR value is obtained 

between the P2 and P5. The pattern of the FNR value increase looks like similar to 

Case 2 and Case 3. The main reason is that even though the predictors are grouped in 

different responses, i.e., classified in training classes, the values of the predictors are 

the same with the Case 2 and 3. Thus, similar patterns are seen.  

 

Figure 3.46: The confusion matrix of the k-nearest neighbor model for Case 4. 

Similar results with Case 2 and 3 are observed for Case 4 too regarding k-nearest 

neighbor model predictions. The highest accuracy, 95.7%, is achieved by selecting the 

k number as 50. As in Case 2 and 3, this state results in the overfitting at its lowest in 

the model variation where the k number is selected as 50. The lowest accuracy, 94.5%, 

is obtained for the selection of k number as 1. The reason is the overfitting of the model 

on the training set. 

In Figure 3.46, the confusion matrix of the k-nearest neighbor model for Case 4 is 

given. In similar, the highest FNR value is observed between the P1 and P4. 20.5% of 

the data classified as P4 is predicted as P1.  
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Table 3.11: The accuracies of Case 5 according to model features 

Models Features Accuracy (%) 

Decision Tree  

(Split criterion=Gini’s Index) 

 

Maximum number of 

splits=100 
99.7 

Maximum number of 

splits=85 
99.7 

Maximum number of 

splits=50 
99.7 

Maximum number of 

splits=25 

 

99.7 

 

Kernel Naïve Bayes 

(Kernel type=Triangle) 

 

Support=Positive 99.8 

Support=Unbounded 

 

99.0 

 

k-nearest neighbors 

(Distance metric=Euclidean) 

Number of neighbors=1 99.9 

99.9 

99.9 

99.9 

99.2 

90.9 

Number of neighbors=10 

Number of neighbors=15 

Number of neighbors=50 

Number of neighbors=100 

Number of neighbors=150 

 

For Case 5, the responses are selected as Case 1 and 2. In difference, the pressure drop 

values of CH and DHW channels are selected as predictors. The training data 

distribution is shown in Figure 3.47. The data are clearly distinguishable from each 

other. Therefore, the accuracies are too high compared to the other cases. The models 

tend to overfit the training data.  



77 

 

 

Figure 3.47: The training data distribution shown in the pressure difference of CH 

and DHW for Case 5. 

In the decision tree model for Case 5, the accuracies of the model variations are 

obtained as same. The confusion matrix of the decision tree model with the selection 

of a maximum number of 25 is given in Figure 3.48.  

 

Figure 3.48: The confusion matrix of the decision tree model for Case 5. 
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The classification tree designation for Case 5 is given in Figure 3.49. The differential 

pressure values of CH and DHW channels are easy to distinguish from each other, as 

shown in Figure 3.50. Therefore, the classification of the testing data based on the 

trained model is achieved with high accuracy. This is the demonstration of the high 

similarity between the training data and testing data.  

 

Figure 3.50: The confusion matrix of Kernel Naïve Bayes for Case 5. 

The Kernel Naïve Bayes model with the selection of unbounded support function gives 

99.0% of accuracy, which is slightly less than the model variation with the positive 

support function. The mentioned reason for the high accuracy is valid for this model 

too. The confusion matrix of the Kernel Naïve Bayes model is given in Figure 3.50. 

The highest FNR value is obtained between Zone 2 and Zone 0. 94.3% of the data 

classified as Zone 2 is predicted correctly. 5.5% of it is predicted as Zone 0 and 0.3% 

of it is predicted as Zone 3, with a total FNR of 5.7%. 
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Figure 3.51: The confusion matrix of the k-Nearest Neighbor model for Case 5. 

The k-nearest neighbor model gives the same and nearly perfect prediction accuracy 

for the variants of the model that has been trialed before for Case 1 to 4. The k-nearest 

neighbor model tends to overfit the training data set. The nearly perfect prediction 

accuracy, 99.9%, is obtained with these predictor selections and the applied cross-

validation method. The two variants of this model are selected with k number 100 and 

150. The lowest accuracy is seen for the model with the selection of 150 for k number, 

in Table 3.11. 

The confusion matrix of the k-nearest neighbor model with the selection of 150 for k 

number is given in Figure 3.51. The highest FNR value is obtained between Zone 5 

and Zone 4. 37.4% of the data classified as Zone 5 is predicted as Zone 4. It is followed 

by the false prediction of 37.0% of the data classified as Zone 3, as Zone 2. Even 

though the FNR value is not too low compared to other cases, false predictions are 

encountered for close classes.  
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Table 3.12: The accuracies of Case 6 according to model features 

Models Features Accuracy (%) 

Decision Tree  

(Split criterion=Gini’s Index) 

 

Maximum number of 

splits=100 
98.7 

Maximum number of 

splits=85 
98.7 

Maximum number of 

splits=50 
98.7 

Maximum number of 

splits=25 

 

94.7 

 

Kernel Naïve Bayes 

(Kernel type=Triangle) 

 

Support=Positive 89.1 

Support=Unbounded 

 

89.0 

 

k-nearest neighbors 

(Distance metric=Euclidean) 

Number of neighbors=1 98.1 

91.1 

86.9 

70.8 

 

Number of neighbors=10 

Number of neighbors=15 

Number of neighbors=50 

 

For the last Case 6, the responses are kept the same as Case 5, the only difference is 

the predictors. The CH inlet temperature, DHW outlet temperature and DHW flow rate 

features have already been measured by the combi-boiler control unit during the in-

real-life operation, without the need for any additional sensor or equipment. Therefore, 

they are used as the predictors for Case 6.  

As in Case 1 and 5, the obtained accuracies of the decision tree model with the 

selection of maximum number of splits 100, 85 and 50 are the same as each other 

within the cases. However, the model with the selection of the maximum number of 

splits as 25 is obtained as differently lower from the others.  
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Figure 3.52: The confusion matrix of the decision tree model for Case 6. 

The confusion matrix of the decision tree model with the selection of the maximum 

number of splits as 25 is given in Figure 3.52. Similar to Case 5, the FNR values are 

obtained between the close classes. The highest FNR value is obtained between Zone 

5 and 4. 14.0% of the data classified as Zone 5 is predicted as Zone 4, 7.0% of the data 

classified as Zone 5 is predicted as Zone 6.  

The classification tree designation of the decision tree model is given in Figure 3.53. 

In Figure 3.53, the classification node is started with the decision rule as classifying 

Zone 8 first. This shows Zone 8 has more clear distinctions than the others.  
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The Kernel Naïve Bayes models with two selections of support function type, give 

approximately the same results, as in Case 1. The obtained accuracy for the unbounded 

support function is 89.0%, while it is 89.1% for the positive support function. The 

confusion matrix of the Kernel Naïve Bayes model that is used with unbounded 

support function is given in Figure 3.54. The highest FNR value is obtained for Zone 

0 and Zone 1. 25.0% of the data classified as Zone 0 is predicted as Zone 1. If customer 

comfort is considered, between Zone 0 and Zone 1 there is a mild comfort difference. 

Therefore, the prediction accuracy of classes close to the worst zone, Zone 8, is 

preferred.  

 

Figure 3.54: The confusion matrix of Kernel Naïve Bayes model for Case 6. 

In contrast to the other cases, the k-nearest neighbor model gives lower accuracy for 

higher k number. This means the best result is only achieved when the model is too 

fitted to the training data. The lowest accuracy of the k-nearest neighbor model is 

obtained as 70.8, for k number is selected as 50. The highest accuracy is achieved as 

98.1, with the selection of k number as 1. 
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The confusion matrix of the k-nearest neighbor model for the selected k number as 50 

is given in Figure 3.55. The highest FNR value is obtained between Zone 1 and Zone 

0, similar to the Kernel Naïve Bayes model. The 39.0% of the data that is classified as 

Zone 1 is predicted as Zone 0. In contrast of the other models, there are classes that 

the true prediction percentages are not higher than the false ones.  

 

Figure 3.55: The confusion matrix of the k-Nearest Neighbor model for Case 6. 
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Chapter 4 

Conclusion 

Fouling is an accumulation of undesired particles on the heat surfaces that causes a 

lack of heat transfer. The fouling of plate heat exchangers, which is used in combi-

boilers is investigated in this thesis. The main aim of the thesis is to investigate the 

machine learning algorithms to classify and predict the fouling status of PHE used in 

combi-boilers, to generate the background of the predictive maintenance that is willing 

to apply to combi-boilers control unit, besides investigating the fouling effect on PHEs 

in terms of heat transfer and energy consumption by using a 1-D model.  

The artificially generated method of experiments is used to obtain the data that is 

required for the algorithm training. The data obtained from experiments are 

representing the fouling behavior of the PHEs that have 30 and 32 plates. These 

obtained data show the fouling effects on PHE can be observed by the used method. 

The effect of fouling on PHE performance is assumed as similar to the performance 

loss that would be occurred if the PHE that is already used in the combi-boiler, i.e., is 

already designed for the combi-boiler, is replaced with a PHE that has fewer plate 

numbers. The plate numbers, and the size of the PHE, is designed according to the 

combi-boilers required power output. With this assumption, the experiment results 

show that the expected trends of output temperatures and pressure drop values of both 

channels are seen.  

The overall heat transfer coefficient and fouling resistance coefficient are calculated 

as the performance values of the tested PHEs. As expected, the overall heat transfer 

coefficients are resulted in decreasing while the fouling resistance coefficient is 

increasing. The values are compared to the reference, which is a study that the 

particulate and composite fouling of PHEs is investigated by adding the particulates 
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as an accelerated test. The obtained trends and values demonstrate similar results with 

the reference study in the literature. 

A 1-D numerical model is structured by using Runge Kutta 4th order ordinary 

differential equation solving method. The differential equations are generated 

according to the thermal resistance method based on energy balance. Temperature 

distribution of 32 and 30 plate PHEs by time and position was examined in a model 

created in MATLAB. Three validation studies are generated to verify the model and 

experiment results. The created model has almost similar results to the referenced 

study [33]. The model results are also compared with the healthy and faulty 

experimental results. The errors for healthy values is less than 2%. The temperature 

difference at maximum for faulty values are less than 2°C. Therefore, the model is 

considered as correct.  

Due to fouling layer occurrence on the plate surfaces, the combi-boiler appliances need 

more natural gas to heat the CH line to reach the required setpoint of DHW outlet 

temperature. This additional required power to reach the setpoint of DHW defined by 

the customer is calculated at maximum fouling by using the model results. The results 

show that combi-boiler appliances need to supply approximately 16 and 7 kW 

additional heat output to reach the required setpoint of DHW in case of maximum 

fouling. 

The obtained data from experiments are used to be implied to the Classification 

Learner Application by MATLAB. Different cases are created to investigate the model 

performances regarding the predictor and response selection. The Naïve Bayes, k-

nearest neighbors, and decision tree models are used. The models are trained according 

to the experiment data grouped by classes regarding customer comfort and test 

conditions. The training data and testing data splitting is generated by using the k-fold 

cross-validation method to avoid overfitting.  

The results show that each algorithm gives a considerable performance in each case. 

The k-nearest neighbors model gives higher prediction accuracies than the other 

models except for Case 6. However, the k-nearest neighbors algorithm tends to overfit 

the training data, while the selected number of neighbors is decreasing. Therefore, the 
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best result of k-nearest neighbor is encountered for the Case 2,3 and 4 where the 

predictor is selected as the overall heat transfer coefficient, due to the increasing 

accuracy regarding with increasing number of neighbors. It results that the k-nearest 

neighbors model would be the best among the other models for predicting the classes 

according to the overall heat transfer coefficient values. The decision tree model 

results show that the model is independent of its maximum number of splits selection. 

The model achieves approximately the same accuracies even the maximum number of 

splits value is changed. The results show the decision tree model gives better 

performance in classifying than the Naïve Bayes model according to the accuracy 

results. In further studies, the selected models would be tested with the real data 

obtained over time to see the results of the integrated model on combi-boilers. 
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