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Assessment of Fouling in Plate Heat Exchangers with

Machine Learning Algorithms

Abstract

Fouling is the accumulation of undesired particles on heat transfer surfaces which
affects the heat transfer performance of a heat exchanger negatively. The accumulation
of these particles prevents heat from being transformed through the heat exchangers
by generating a fouling layer-like insulation. The main aim of the thesis is to
investigate the machine learning algorithms to classify and predict the fouling status
of PHE used in combi-boilers, to generate the background of the predictive
maintenance, besides investigating the fouling effect on PHESs in terms of heat transfer

and energy consumption by using a 1-D model.

The required data to train the machine learning algorithms is acquired experimentally
by using an artificially generated method for evaluating the fouling behavior. The
effect of fouling on PHE performance is assumed as similar to the performance loss
that would be occurred if the PHE that is already used in the combi-boiler, would be
replaced with a PHE that has fewer plate numbers. The experiment results show that
the expected trends of output temperatures and pressure drop values of both channels

are seen.

The overall heat transfer coefficient and fouling resistance coefficient are calculated
as the performance values of the tested PHES. As expected, the overall heat transfer
coefficients are resulted in decreasing while the fouling resistance coefficient is

increasing.

The 1-D numerical model is generated by using Runge Kutta 4" order ordinary
differential equation solving method. The differential equations are created based

thermal resistance method for both channels to evaluate the temperature distributions



by using the experimental data. The results show that with less than 2% error the model

Is concluded to receive the correct outputs with the experimental outputs.

The additional required power to reach the setpoint of DHW defined by the customer
is calculated at maximum fouling by using the model results. The results show that
combi-boiler appliances need to supply approximately 16 and 7 kW additional heat
output to reach the required setpoint of DHW in case of maximum fouling for 32 and
30 plates PHE, respectively.

The obtained data is implied to train the machine learning algorithms, Naive Bayes, k-
nearest neighbor, and decision tree. The k-fold cross-validation method is used to
avoid overfitting for the implementation method. It results that the k-nearest neighbors
model would be the best among the other models for predicting the classes according
to the overall heat transfer coefficient values. The decision tree model results show
that the model is independent of its maximum number of splits selection. The results
show the decision tree model gives better performance in classifying than the Naive

Bayes model according to the accuracy results.

Keywords: Fouling, machine learning, plate heat exchangers, classification, 1-D
modeling, Runge Kutta, combi-boiler



Plakali Is1 Degistiricilerde Kirliligin Makine Ogrenmesi

Algoritmalari ile Incelenmesi

Oz

Kirlilik, bir 1s1 degistiricinin 1s1 transfer performansini olumsuz yonde etkileyen, 1s1
transfer yiizeylerinde istenmeyen parcaciklarin birikmesidir. Bu parcaciklarin
birikmesi, yaliim benzeri bir kirlilik tabakasi olusturarak 1sinin 1s1 degistirici
araciligiyla aktarilmasini engeller. Tezin temel amaci, kombilerde kullanilan plakali
1s1 degistiricilerin kirlenme durumunu siniflandirmak ve tahmin etmek i¢in makine
O0grenmesi algoritmalarini arastirmak, kestirimci bakimin arka planini olusturmak,
ayrica plakali 1s1 degistiriciler lizerindeki kirlenme etkisini 1s1 transferi ve enerji

acisindan 1-B model kullanarak incelemektir.

Makine 6grenimi algoritmalarint egitmek i¢in gerekli veriler, kirlenme davranigini
degerlendirmek icin yapay olarak olusturulmus bir yontem kullanilarak deneysel
olarak elde edilir. Kirlenmenin plakali 1s1 degistirici performans: tizerindeki etkisi,
kombide halihazirda kullanilan plakali 1s1 degistiricinin daha az plaka numarasina
sahip bir plakali 1s1 degistirici ile degistirilmesi durumunda olusacak performans
kaybina benzer olarak kabul edilir. Deney sonuglari, her iki kanalin ¢ikis
sicakliklarinin ve basing diislis degerlerinin beklenen egilimlerinin goriildiigiini

gostermektedir.

Toplam 1s1 transfer katsayisi ve kirlenme direnci katsayisi, test edilen plakali 1s1
degistiricilerin performans degerleri olarak hesaplanir. Beklendigi gibi, toplam 1s1

transfer katsayilari, kirlenme direnci katsayisi artarken azalmaktadir.

1-B sayisal model, 4. Mertebeden Runge Kutta diferansiyel denklem ¢6zme yOntemi

kullanilarak tiretilmistir. Diferansiyel denklemler, deney verilerini kullanarak sicaklik



dagilimlarin1 degerlendirmek icin her iki kanal i¢in de termal diren¢ yontemi temel
alinarak olusturulmustur. Sonuglar, %2'ten daha az hata ile modelin, deney ¢iktilariyla

dogru ¢iktilarin alindig1 sonucuna varildigini géstermektedir.

Miisteri tarafindan tanimlanan DHW set noktasina ulagsmak i¢in gereken ek gii¢, model
sonuglart kullanilarak maksimum kirlenme i¢in hesaplanmistir. Sonuglar, maksimum
kirlenme durumunda gerekli DHW set noktasina ulagmak i¢in kombi cihazlarinin
sirastyla 32 ve 30 plakali 1s1 degistiriciler icin yaklasik 16 ve 7 kW ek 1s1 ¢ikisi

saglamasi gerektigini gostermektedir.

Elde edilen veriler, makine 6grenmesi algoritmalari, Naive Bayes, k-en yakin komsu
ve karar agacimi egitmeye yoneliktir. Uygulama yoOntemi olarak modelin fazla
uydurmasini 6nlemek i¢in ¢apraz dogrulama yontemi kullanilir. Siniflar1 toplam 1s1
transfer katsayis1 degerlerine gore tahmin etmek i¢in k-en yakin komsu modelinin
diger modeller arasinda en iyisi olacagi sonucuna varilmigtir. Karar agaci modeli
sonuclar, modelin maksimum ayrim degeri se¢iminden bagimsiz oldugunu
gostermektedir. Sonuglar, karar agaci modelinin dogruluk sonuglarina gére Naive

Bayes modeline gore siniflandirmada daha iyi performans verdigini gostermektedir.

Anahtar Kelimeler: Kirlenme, makine Ogrenmesi, plakali 1s1 degistiriciler,

simiflandirma, 1-B modelleme, Runge Kutta, kombi
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Chapter 1

Introduction

1.1 Fouling in Plate Heat Exchangers

Fouling is defined as the process of accumulation of undesired particulates on heat
transfer surfaces [1]. The accumulation of these particulates causes a lack of heat
transfer in the heat exchangers. The plate heat exchangers mostly used water as a fluid,
thus the fouling problem is often occurred by the accumulation of particles coming
from the other components of old, rusty installments or by precipitation of particles
that contain a high amounts of calcium compounds. If the fouling is occurred by the
accumulation of undesired particles, especially rusty metal compounds, the fouling
type is named as particulate fouling. If the fouling is occurred by precipitation of
calcium compounds contained in water, this type of fouling is named precipitation
fouling. In addition, if the surface of the heat exchanger is exposed to corrosion of
itself by water, particle dissociation from the surface and particle aggregation on the
surface may have occurred. This type of fouling is named as corrosion fouling. These
fouling types can be seen together as individually. If there is more than one fouling
type is affected on the heating surface, the fouling type is named composite fouling.
Especially, particulate fouling and precipitation fouling occurred together.

Combi-boiler is a heating appliance that is used to heat the residence and provide
domestic hot water to the customer. Domestic hot water is denominated for the hot
water used in the shower/bath or the kitchen. The domestic hot water, whether
provided via tank or instantaneous heating of mains water, is heated in the combi-
boiler appliances by using plate heat exchangers (PHE). The particulate fouling is
encountered in the PHEs, due to the undesired rusty particles coming from the

installments. The precipitation fouling is encountered in the PHES, because the

1



calcium compounds lose their solubility in the water when the temperature of the water
Is increased, i.e., the water is heated.

1.1.1  Combi-boilers

A combi-boiler contains three main parts, the outside structure, the hydraulic part, and
the heat cell part. The heat cell part is where the combustion of gaseous fuel, e.g.,
natural gas, is occurred. In Figure 1.1, the heat cell is designated as 1. The heat that is
meant to transfer to the water is generated in this part of the combi-boiler. This heat
transfer has occurred via a fuel-water heat exchanger, which is called a primary heat
exchanger in combi-boilers. The water that is heated in primary heat exchangers has
two functions. One is circulating through the radiator’s line and heating the residence,
the other function is circulates through the second closed loop, through the PHE to

heat the domestic hot water.

ke

Heat cell

. Pump

. Plate heat exchanger (PHE)
3-way valve
Central heating supply line
Central heating return line
Domestic hot water line
Domestic cold water line
Radiators line

]@
AV
5

Figure 1.1: The schematic of the combi-boiler

The other essential part of the combi-boiler is the hydraulic. The water circulating
pipes, the PHE, and the main controlled sensors are placed in this part. The PHE has
two immiscible channels, one channel is for the water heated by the heat cell and goes

through the line of radiators, central heating water (CH), the other channel is for the

2



domestic hot water which is coming as mains water and goes to the household for
domestic usage, domestic hot water (DHW). In Figure 1.1, the PHE and its inlets and

outlets are designated as 3.

The CH water is circulated via a pump, as shown in Figure 1.1 as 2. The diverting of
the water to the radiators line or PHE is provided by a 3-way diverter valve, shown in
Figure 1.1 as 4. The diverter valve is controlled by the combi-boiler’s control unit.
When the customer opens the tap for hot water, in the DHW line there is flow that is
sensed by a flow sensor and transferred to the control unit. Then, the control unit sends
a signal to the diverter valve to change its shaft to divert the water to the DHW line
from the CH line.

1.1.2  Fouling Behaviour

Plate heat exchangers, which are used to transfer heat indirectly from the combustion
gases to the domestic water side, are constantly under the influence of small particles
and water-soluble compounds coming from other components of the heating system
(combi-boiler parts, pipes, radiators, etc.) and the mains water. When the
accumulations that cause blockage in the heat exchangers are examined, it is seen that
the particles detached during the flow from the corrosion layer on the inner surfaces
of the system components and the precipitation of the calcium compounds contained
in the mains water on the surfaces with the effect of temperature change are the main

factors causing the blockage.

It is known that accumulations occur differently on the cold (mains water) and hot
(central heating) flow sides of the plate heat exchanger. The accumulation on the mains
water side occurs only because of the precipitation of crystals in the water. There are
many studies in the literature examining this subject [2-6].

In these studies, the effect of water physio-chemical properties (temperature, pH,
concentration, etc.) and heat exchanger geometry on the precipitation amount was
investigated [2, 3, 6].

In addition, the effect of the precipitation of calcium compounds on the mains water
side of the plate heat exchanger on the performance of the plate heat exchanger has
been studied in detail [7].



On the central heating side of the plate heat exchanger, there is a closed loop between
the radiators and the boiler. Since there is no continuous mains water supply in the
central heating cycle, compared to the domestic water side, the central heating side of
the plate heat exchangers is much less affected by the pollution caused by the

precipitation of calcium compounds [7].

Since the main material of the primary heat exchanger is aluminum, corrosion occurs
on the surfaces in contact with water. In the examination carried out by Bosch
Thermotechnology on used plate heat exchangers in this study, particle accumulation
was observed in the plate heat exchanger. In addition, the particles causing clogging
on the heating water side were investigated by FTIR (Fourier transformation infrared)
analysis. As a result of the analysis, it was concluded that the particles that cause
blockage because of high amounts of aluminum and oxygen element and low amounts
of calcium element originate from the primary heat exchanger. The reason why the
calcium element is found as a result of the analysis is that although it is a closed cycle
without an active water supply, there are calcium crystals (CaCOs3) crystals in the water
in the CH line. It is known that the solubility of this calcium compound in water
decreases at high temperatures. For this reason, the presence of calcium, which also
allows the Al>O3 particles to be attached, affects particle accumulation. This
phenomenon is also studied in the study by Zhang et. al [6]. They studied the Al2Os
particulate accumulation alone and then together with the calcium compounds. The
result that is obtained that the fouling resistance coefficients which indicate the fouling
layer thickness, are higher than the Al,O3 particulate accumulation studied alone.

There are many factors that determine the cross section narrowing and the amount of

pollution in the plate heat exchanger. The main of these factors are:

The source, type and amount of the particles causing the blockage,
Plate heat exchanger geometry,
Flow characteristics (fluid velocity).

M w e

Usage time

With the FTIR analysis performed by Bosch Thermotechnology, it was seen that the
biggest cause of blockage in the plate heat exchanger was the Al>Oz (alumina)

compound.



In addition, the information coming from the field shows that in houses where the
highest congestion failure is encountered, the old installations used show that other
system components other than the combustion chamber also cause particle

accumulation.

Assuming that the installations cannot be changed, this source of pollution will not be

considered as a parameter.

The primary heat exchanger in the heat cell is produced by casting method from

aluminum material in a cylindrical structure that will allow the fuel to burn in it.

There are water passage channels that follow a helical path on the outer wall. There
are contact of water with the aluminum surface over a large surface area. The

parameters that affect the corrosion of aluminum with water are given below.

1. Temperature
2. Flow Rate
3. pH

When aluminum reacts with water, a natural oxide layer is formed on the wet surface,
which provides resistance to the corrosion of the aluminum with mass loss. This oxide
film layer can be examined in two layers the inner layer in direct contact with the metal
and the outer layer in contact with water, whose structure changes depending on the
temperature. The outer layer is active in electrochemical reactions with water due to
flow and changing temperatures. The inner layer that encounters the metal continues
to form as a result of the reactions with the aluminum. The corrosion of aluminum
depends on the thickness of the oxide layer formed. The thickness of the oxide layer
formed on the surface increases with temperature and time. As the temperature rises,
the solubility of soluble gases (especially oxygen) in water decreases. This means more

oxygen is available to react with aluminum [8].
1.1.2.1 Temperature Effect

Up to 60-70 °C water temperature, the oxide film, which is a thin layer, cannot show
sufficient resistance to the reactions with the ions in the water, and pitting corrosion is

dominant on the aluminum surface. It is seen that the pitting depth at the surface



decreases as the temperature rises (Figure 1.2). At temperatures of 70 °C and above,
the tendency to pitting corrosion gradually disappears. This is because the oxide layer

tends to thicken and fill the pits.

Table 1.1: Corrosion forms according to temperature change [8]

Temperature Corrosion Forms
<100 °C Pitting corrosion (above 60-70 °C in tap
water, pitting corrosion tends to
decrease)
100 -150 °C Uniform corrosion
150 — 250 °C Uniform corrosion and intergranular
corrosion
>250 °C Intergranular corrosion (with metal

destruction)
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Figure 1.2: The pitting corrosion behavior according to temperature change [8]

Between 100 and 150 °C, uniform corrosion is observed, which causes reductions in
the cross-sectional area with wear affecting the entire surface area. At 150 °C and
above, the effect of intergranular corrosion begins to be seen. The relationship of

temperature with corrosion is summarized in Table 1 [8].

In simulations made by Bosch Thermotechnology, the temperature distribution on the
aluminum wet surface of the corroded primary heat exchanger was investigated. The
water temperatures during the operation were taken as the design temperatures of 60

and 80 °C, respectively, at the inlet and outlet of the primary heat exchanger.
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1.1.2.2 Flow Rate Effect

In a situation where all other parameters are kept constant, the corrosion effect of
stagnant water on the wet aluminum surface is greater than that of water flowing up to

a certain speed.

At high velocities, the effect of the flow is seen as erosion on the aluminum wet
surface. Aluminum can withstand erosion effects up to 2.5 — 3 m/s [8]. The highest
average speed seen in the primary heat exchanger in existing Bosch combi devices is
1.5 m/s. When viewed from a general point of view at these flow rates, it is expected
that there will be no erosion effect on the surface. It was determined that the variable
cross-sectional area of the water passage channel in the primary heat exchanger and
the Reynolds number varied between 20795 and 59297. Assuming the critical
Reynolds number of 2300 for in-channel flow, the flow in the primary heat exchanger
is determined to be turbulent. For this reason, it is possible to see instantaneous and

locally high velocities and therefore erosion of wet surfaces.

The oxide layer formed on the aluminum surface is not stable in flowing environments.
At low velocities, there is a decrease in reaction rates relative to the stagnant flow.
Reduction in reaction rates shows a decrease in mass loss from the wet surface in the
case of pitting corrosion (at temperatures below 60 °C), and a decrease in the rate of

layer formation in the formation of an oxide layer.

At high flow rates, aluminum becomes vulnerable as the flow breaks the oxide layer
formed from the surface. As the aluminum becomes unprotected, the corrosion effect
on the surface increases and mass loss occurs. The cycle between the pump not
working and working conditions in the boiler can create an unstable and unpredictable
cycle of accumulation and rupture on the surface. Therefore, the rupture of the
corrosion layer in the primary heat exchanger in the combustion chamber depending
on the flow rate is another parameter that causes accumulation in the plate heat

exchanger.
1.1.2.3 pH Effect

While the pH value of water is between 5 and 8, the solubility of aluminum oxide in

water is much less than in more acidic or basic environments (Figure 1.3).
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In Figure 1.3, solubility is expressed with the concept of normality, which is the
equivalent number of grams of the substance dissolved in one liter of solution. In acidic
and basic environments where aluminum oxide dissolves, the aluminum surface
remains unprotected. Therefore, corrosion, which causes particle breakage to cause

mass loss, is more common in acidic and basic environments [9, 10].

Normality
N

107 |
107 }
107 |
107
107°
10°¢ b
1077 |

Figure 1.3: The variation of aluminum oxide solubility in water with pH [8]

In the reactions that occur because of the contact of aluminum with water, H+ and OH-
ions are formed which can change the pH of the environment [10]. In the pits formed
because of pitting corrosion, where these reactions are intense, the pH value of the
water changes to acidic and basic [11].

It is predicted that the reaction rate changes with more than one parameter such as
temperature, flow rate, according to the operating dynamics of the boiler. It is foreseen
that this reaction rate change causes small changes in the pH value of the water, and
that because of this pH change, the reactions may accelerate.

Generally used tap water has a pH between 6.5 and 8.5. Although partial pH changes
can be seen, the pH value of water in general is the range in which aluminum oxide
shows low dissolution. Therefore, the effect of pH value on corrosion will not be
considered in this study.



1.2 Predictive Maintenance

At the beginning of the fouling process, the accumulations only affect the flow locally,
grow as time progresses and become in a position to affect the efficiency of the plate
heat exchanger completely, such as narrowing and congestion in the cross sections of
channels. Thus, the prevention of fouling is essential to avoid the lack of customer

comfort.

The prevention of fouling is recently associated with predictive maintenance. In recent
time, the well-known maintenance process is reacting to the problem of a machine at
the time the failure occurs. If maintenance has occurred in a schedule that the time is
decided according to statistics not real-time data, this maintenance type is only
preventing. During this preventing maintenance, there can be a time that the machine
can work without failure, however, it is not known. This causes unnecessary
maintenance costs. If the need for maintenance of a machine would be known, the
maintenance would be carried out just in time and need. The predictive maintenance
concept contains this phenomenon. If the status of a machine is monitored and
processed during the machine’s operating hours, and the failure point can be trained to
an algorithm, the maintenance time can be predicted. The status classification of the
machine can be obtained by using machine learning techniques.

In this thesis, the fouling status, i.e., failure status caused by fouling, would be known
by applying the machine learning algorithms for classification. For the given data,
models are trained to classify the unseen data that would be encountered during the
operation of the combi-boiler.

In the literature, modeling and prediction algorithms have become popular study
subjects recently in the area of fouling prevention or predictive maintenance. These
algorithms, which include algorithms for prediction and detection based on
autoregressive integrated moving average (ARIMA) [12], auto-associative kernel
regression (AAKR) [13], support vector machines (SVM) [14, 15], and artificial neural
networks (ANN) [16-20], have largely been based on statistical methods and machine
learning algorithms. Kalman filter research has also looked at model-based fouling
prediction [21].



An algorithm to forecast fouling behavior has also been examined with the predictive
maintenance technique. The design of the predictive maintenance procedures is mostly
based on data-driven fault diagnosis. This algorithm's goal is to identify abnormalities,
and fault diagnostics often concentrate on statistical techniques that offer classification
and clustering. The majority of failure mechanisms are connected to deterioration

processes [22].

By keeping an eye on the health system, as in reference, the data collection procedure
may be maintained [23]. Naive Bayes, k-nearest neighbors (kNN), decision trees, and
random forests are some of the machine learning methods used for classification.
These algorithms are successfully researched by Shohet et al. [24] to classify boiler
defects using simulation results. The decision tree model provides the best outcome
with 97.8% accuracy as a result. As observed from the references, machine learning
algorithms are typically utilized in the HVAC business, particularly in heat
exchangers, but when open resources are taken into account, the classification machine

learning algorithms on PHES have barely been examined.
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Chapter 2

Method

The process of the study is carried out in titles of data acquisition, data implementation
of partial blockage assessment and data implementation of fouling assessment

methods.

2.1 Data Acquisition

A data acquisition method is generated to simulate the fouling behavior in PHEs. The
data that is needed to imply in algorithms, is acquired by using experimental methods.
The experiment process is maintained with experiment procedure design, experiment

parameters determination, experiment test rig setup and data reduction, respectively.
2.1.1  Experiment Procedure Design

Healthy and faulty data is needed to train the algorithm which is required for the
algorithm to distinguish. Healthy data stands for the zero-hour performance of PHE

while there is no fouling and PHE has its most effective status, i.e., is healthy.

The PHEs are designed to be used in combi-boilers according to the heat transfer
requirements of combi-boilers. The power outputs of combi-boilers, i.e., heat transfer
outputs, in product portfolios are generated by companies regarding the general needs
of households. The PHEs are designed to meet this required power output and carry
out the required heat transfer from heated water by natural gas to DHW in determining

volume flow rates.

The volume flow rate of the DHW line is limited and controlled with a flow limiter

device in combi-boiler utilities to keep the volume flow rate constant. The DHW goes
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through one channel of PHE. The other channel, the CH water line is circulated with
a pump. When DHW usage is required by the customer, the combi-boiler operates at
its maximum power, thus the volume flow rate of CH water is kept constant. Therefore,
PHESs are designed to maintain a temperature difference with the specific two flow

rates of its two channels to provide the required heat transfer.

According to the mentioned requirements, the number of plates of PHEs is determined
to be used in combi-boilers which gives specific maximum power. Each PHE with a
number of plates has a technical specification that indicates the temperature difference
corresponding to volume flow rates of both channels. These data that are generated in
design process of PHEs, are stood for the zero-hour performance, when there is no
fouling in channels. Consequently, these technical design data of PHEs for particular
number of plates are used as healthy data that denotes the reference performance

values to imply algorithms.

Faulty data stands for the performance data (outlet temperatures of channels, pressure
drop of channels) of PHEs after fouling starts. The faulty data is generated from

experiments.

During the design process of the experiment procedure, it is assumed that when fouling
in PHE starts, the effect of fouling on the performance of PHE would be the same if
the PHE has a smaller number of plates would be used instead of the designed one
according to the combi-boiler power output. Therefore, to simulate the fouling
behavior in PHEs, the technical specifications of a PHE are applied as experiment
parameter to a PHE that has a smaller number of plates.

2.1.2  Experiment Parameters

The volume flow rates of the DHW line and CH water line are kept as constant as it is
possible during operation in real life of a combi-boiler. Therefore, the volume flow
rates of both water lines are kept constant during tests. The used volume flow rate

values in liter per minute (I/min) are shown in Table 2.1.

The mentioned technical specifications of PHESs that have 30 and 32 plates are applied
as test conditions to PHEs that have 28, 26, 24, 22, 20, 18 and 16 plates. The DHW
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and CH volume flow rate values in the technical specification of a PHE that has 32
plates, are used as a test condition that would give the reference performance values
of a PHE with 32 plates, indicating the healthy value, as shown in Test 1. Similarly,
the used volume flow rates of both channels for a PHE that has 30 plates as a test
condition are the volume flow rate values in the technical specification of a PHE with
30 plates, also it would give the healthy value, as shown in Test 10.

Table 2.1: Experiments and conditions applied to demonstrate the clogging behavior

of the PHEs
Condition 1 Condition 2
Tested CH DHW Tested CH DHW
PHE Flow Flow PHE Flow Flow
plate Rate Rate plate Rate Rate
number  (I/min)  (I/min) number  (I/min)  (I/min)
Test 1 32 29 18 Test 10 30 26 10.3
Test 2 30 29 18 Test 11 28 26 10.3
Test 3 28 29 18 Test 12 26 26 10.3
Test 4 26 29 18 Test 13 24 26 10.3
Test5 24 29 18 Test 14 22 26 10.3
Test 6 22 29 18 Test 15 20 26 10.3
Test 7 20 29 18 Test 16 18 26 10.3
Test 8 18 29 18 Test 17 16 26 10.3
Test9 16 29 18

Furthermore, except Test 1 and 10 the rest of the Tests shown in Table 2.1 represent
the tests that would give results the faulty data. In the fault tests (Test
2,3,4,5,6,7,8,9,11,12,13,14,15,16 and 17), the volume flow rates from technical
specifications of 32 and 30 plates are used for the PHEs that have 28 to 16 plate
numbers, as it is shown in Table 2.1. So as in Test 2, when the 32 plates PHE technical
specifications are applied to 30 plates PHE, the result is assumed to show a
performance decrease if the 2 plates of 32 plates PHE are clogged. Similarly, the same
inference can be deduced for other test conditions. In the end, in Test 9, clogging of
16 plates, 50% clogging for 32 plates, is evaluated as the worst case.
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The DHW and CH inlet temperatures are kept constant for all test conditions, 1 to 17.
10%, °C and 721,°C are DCW and CH water line inlet temperatures, respectively.
The inlet temperatures are taken from the design inlet temperature parameters for
PHEs according to the inlet temperatures that the PHE would be most exposed to

during the operation of the combi-boiler in real life.
2.1.3 TestRig

The PHEs that have 32 and 30 plates are tested stand-alone in the test rig according to
the test conditions shown in Table 2.1. The stand-alone test demonstrates a test in
which only the component, i.e., PHE is tested with the conditions that would be
occurred in real life in combi-boiler. The inlet temperatures and flow rates of both
channels of a PHE are used as in 2.1.1.

The stand-alone test rig simulates the DHW line and CH line as in real life as possible
as it is. The experimental setup contains two lines that represent CH line (orange

colored) and DHW line (green colored) circuits (Figure 2.1).

In both lines, pneumatic valves are placed to direct the water to the required line. Also,
both lines have flow control valves and flow meters to provide information to control
and measure the volume flow rate of water circuits. The DHW line simulates the open
flow circuit as in real life. The CH water line simulates the closed loop circuit as in
real life in combi-boilers. The CH line has a pump to circulate the water through the
closed loop. A tank is used to store the heated water by another closed water loop
which is heated by a combi-boiler. Here the combi-boiler is used as a heating source
only. The yellow-colored line represents the gas line that the combi-boiler needs
during operation. A gas valve is placed on the gas line to control the gas passing
through the combi-boiler for safety reasons.

The PHE is shown as tested PHE in schematic. Pressure difference and inlet and outlet
temperatures are measured from the temperature and pressure differentiation sensors

that is placed in both lines.

There is another plate heat exchanger is used in the test rig to control the CH inlet
temperature to test PHE. The simulated CH water line is heated by a combi-boiler

although non-directly. There is no combi-boiler automatic control to adjust the CH
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inlet temperature to test PHE in the rig. Therefore, a heat exchanger is placed to
provide cooling to the heated CH water line to adjust the required inlet temperature of
CH to test PHE.

Gas line DHW line outlet DHW line
Flow : inlet
contro

Heat valve Manual
Gas exchﬂlger valve
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valve
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Figure 2.1: Stand-alone test rig schematic for PHE

During tests, the steps listed below are followed.

1. Place the PHE to be tested.

2. Supply water to CH closed loop up to 2 bar statistic pressure.

3. Turn on the combi-boiler and adjust the set temperature according to the
required one in CH closed loop.

4. Turn on the CH circuit pump and adjust the modulation percentage according
to get the required volume flow rate.

5. Use a flow control valve to get better accuracy in volume flow rate.

6. Heat the CH water to the required temperature.

7. Use the additional heat exchanger by providing cooling to achieve better
accuracy in temperature.

8. Adjust the set point of the chiller system.

9. Turn on the DCW valve in the chiller line to supply the DCW to the PHE.
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10. Adjust the flow control valve placed in the DCW line to get the required
volume flow rate.

11. Measure the outlet temperatures of PHE channels and pressure difference.

12. Repeat the steps for the new PHE to be tested.

2.1.4  Data Reduction

The most essential effect of fouling on PHE is performance decreasing, i.e., pressure
difference increasing and heat transfer efficiency decreases.

The obtained data from experiments are inlet and outlet temperatures, volume flow
rates and pressure differences of CH and DHW channels of PHE. The overall heat
transfer coefficient and fouling resistance coefficient are calculated from these data
that are obtained from experiments to evaluate the performance behavior of PHEs.

The overall heat transfer coefficient is calculated by using the logarithmic mean
temperature difference (LMTD) method. In Equation (2.1), the total heat transfer rate
should be calculated first to get the overall heat transfer coefficient that is denoted as
U. The area, which is denoted as A, is taken as the heat transfer area, i.e., the projection

area of plates. LMTD is calculated as in Equation (2.2) for every test condition.

Qtotal = UAAT), (2- 1)

AT, — AT,

Alim = AT, /8Ty

(22)

Here the AT, and AT, are representing the temperature difference between two
channels at the inlet and outlets of the PHE. Due to counter-flow in PHE, AT; and AT,

are calculated as in Equation (2.3) and (2.4).

AT, = Th,in - Tc,out (2.3)

AT, = Th,out - Tc,in (2.4)
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Ty in and Tp, o, denote the inlet and outlet temperatures of hot channel, i.e., CH water
channel. T, ;;, and T, o, denote the inlet and outlet temperatures of cold channel, i.e.,
DHW channel. The inlet and outlet temperatures of both channels and the temperature

differences (AT; and AT,) are represented in Figure 2.2.

AT:

Th.ill — CH Water Chan_ne]_ — Thout
AT, (
Teout Crm—— DHW channel D e

Figure 2.2: Inlet and outlet temperature modeling of the counter-flow PHE

The total heat transfer rate that is denoted as Q4 iS determined from an energy
balance of the water flowing through PHE channels. Q,,4; is calculated as shown in
Equation (2.6) by using Equation (2.5). The calculation method is referenced in the
study by Zhang et al. [6].

Qi = Ti’liCp‘l'ATl',l. € {h, C} (25)

. 1., .
Qtotar = E (Qh + Qc) (2.6)

Here, m is mass flow rate, c, is the specific heat at constant pressure and AT is the
temperature difference between the inlet and outlet temperatures of CH and DHW
channels. The heat transfer rate in the hot channel and cold channel may differ in real
cases, therefore the heat transfer rates are taken average to calculate the total heat

transfer rate.

After calculating the total heat transfer rate and the LMTD with known heat transfer

area, the overall heat transfer coefficient can be calculated as in Equation (2.7).

_ Qtotal (2 7)

U =
AAT,,,
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The particles accumulated on the surface of plates create an effect similar to an
insulating layer. The fouling layer represents an additional resistance to heat transfer
and causes the heat transfer to decrease. This effect of fouling on heat transfer is
represented by a fouling resistance, Rs. The fouling factor is calculated for Test 2 to
Test 8, shown in Table 2.1. The fouling factor is zero for Test 1, i.e., reference test

conditions.

Heat transfer is carried out from the hot fluid, CH water, to the plate by convection,
through the plate by conduction, and from the plate to the cold fluid, DHW by
convection. The heat transfer to the surroundings is neglected while the PHE is
modeling. The radiation effects are included in convection heat transfer coefficients.

The thermal resistance method is used to find the fouling resistance coefficient. The
thermal network of a volume unit of PHE is shown in Figure 2.3. The convection heat
transfer resistances, Rcxand Rpnw, that are generated from hot fluid to plate and plate
to cold fluid and the conduction heat transfer resistance, Rp, that is generated through
the plate also can be seen in Figure 2.3. The fouling resistance can be found in Equation
(2.8) by using the convection, conduction resistance coefficient and overall heat
transfer coefficient. In Equation (2.8), hcy and hpyy, represent the convection heat
transfer coefficient. A denotes the cross-sectional area. L is the length of the plate
through the heat transfer direction. The conduction heat transfer coefficient denoted as
k which is taken for the plate material, 316L stainless steel.

CH water channel

—— TCH @ —--—ommomomeooee . s Tcn
RCH %
Tpcu
WCH T
S = Tepuw
P.DHW RDHW 3
Togw ® 7 777TTTTTTTTTTS — - ——= Tpaw
DHW channel

Figure 2.3: The thermal resistance network of a volume unit of PHE

1 1 L
—— =Ry + Rp + Rppw + Ry = +—+
U.A~ CH T TP T EDEW TS T A kA hppwA

+R,  (28)
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2.2 Data Implementation of Fouling Assessment

The fouling effects on PHES are investigated by generating a 1-D model in MATLAB
program to validate the experimental results. The 1-D modeling is created based on
finite volume elements. The PHE is modeled as discretized volumes. The PHE is
modeled as two channels, CH and DHW, and one plate. The energy balance equation
is used to model the heat transfer between the channels and the plate. The generated
PHE model is discretized to volumes where the energy balance equation is applied.
There is convective heat transfer between the channel and the plate for both hot and
cold channels, i.e., CH and DHW channels, while there is conduction heat transfer
from the hot surface of the plate where is faced to hot fluid to cold surface of the plate
where is faced to cold fluid. This heat transfer flow is modeled based on thermal
resistance method. The resistance model is created starting from the convection heat
transfer from hot fluid to plate surface, then it goes with the conduction heat transfer
through the plate, it is followed by the convection heat transfer from plate surface to

cold fluid. Similar thermal resistance model is used with the one shown in Figure 2.3.

The fouling as mentioned in 2.1.4, is the accumulation of undesired particulates on
plate surfaces. This accumulation results in generation of a fouling layer which acts
like an insulation layer. Therefore, while the thermal resistance model is creating, the
resistance of fouling layer, i.e., fouling resistance should be considered on the plate
surfaces between the convection heat transfer coefficients from fluids to plate and
conduction heat transfer coefficients through plate. The fouling resistance coefficients

are added to the thermal resistance model as shown in Figures 2.4 and 2.5.

i i i i i i i i i i
CH water channel [ [ l ! ! i | i |
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] ] ] 1 1 ] ] 1 ] ]
i i i i i i i i i i
Fouling layer | 1 1 ; | | | ; i ]
Fouling layer | . . . . . . . " |
i i i i i i i i : i
T i T v i T T T i i i i T | DHW channel
c1 ! c2 | | ci-1 i i+l ! ] ] | 1 en |
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i i i i i i i i i : i
X o1 X Xj41 Xy

Figure 2.4. Discretized PHE model
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The energy balance equations are created from a reference where the dynamic behavior
of temperature distribution is studied by Bobic et al., [33]. In the equations of hot and
cold channel (Equation (2.9) and (2.10)), left-hand side of the equations represents the
internal energy that specified volume has. In the right-hand side of the equations, the
heat transfer coming from the previous volume, the heat that is transferred to next
volume and the heat transfer between the wall and fluid is modeled. The conduction
heat transfer through the wall is modeled based on energy balance shown in Equation
(2.112).

EE— - — Ty,
Thi-1-Mpi—1] Thi

Twi-1 fivauinl ek il —— Ty

Tw,i+1
ity [ttt = Tf
Tc,i—l- mc,i—l T._-_ o Bl oTTTTo L T
o Teiv1-Meiq
<+—
1 ]
Xj-1 % Xj+1

Figure 2.5. Thermal resistance model of PHE with the addition of fouling layers

dTn; . .
Vwpcy 71 = mpCpThio1 — MpCpThivs — Aan(Thi — Twini) (2.9)

dT.; . )
chcp d_;l = mcCpTc,i—l - mcCpTc,i+1 + Aac(Tw:c,i - Tc,i) (2.10)

drT,, ; 2k
ViyPCp d;v,l =A— [(Twni = Tw,i) = (Twi — Twici)] (2.11)

In the Equation (2.9), (2.10) and (2.11), V stands for volume, m3, p represents the
density of fluids, kg/m?, T represents the temperature, °C, 1 represents the mass flow
rate, kg/s, cp represents the specific heat at constant pressure, J/kg°C, A represents the
heat transfer area, m?, a represents the convection heat transfer coefficient, W/m?2K, k
represents the thermal conductivity, W/mK, and I represents the length of plate while
the h,c and w are subscripts that stand for hot channel, cold channel and wall (plate),

respectively.
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The relation between surface of the wall and center of the wall is evaluated regarding
the thermal resistance method as shown in Equation (2.12) and (2.13) to reduce the

unknown variables. Here, U represents the overall heat transfer coefficient.

Uhn,i

Tweni = Thi — T (Th,i — Tw,i) (2.12)
i
Uc,i

Tw:c,i = Tc,i - a_ (Tc,i - Tw,i) (2-13)

c,i

A relation between cell temperature, denoted as i, and previous and next cell
temperature, denoted as i-1 and i+1, is structured by taking average of the previous
and next cell temperatures to indicate the cell temperature as shown in Equation (2.14)
and (2.15).

_ Thi—1 + Thiva

. (2.14)

Th,;

Tc,i—l + Tc,i+1

. (2.15)

Tc,i =

By applying Equation (2.12), (2.13), (2.14) and (2.15) into Equation (2.9), (2.10) and
(2.11), final equations used to structure the model in MATLAB given in Equation
(2.16), (2.17) and (2.18).

dTs ;
dftz,l = C1(Th,i—1 - Th,i) - Cz (Th,i — Tw,i) (2.16)
dT.;
d;,l = C(Tei—1 — Tei) + Co(Ty; — T p) (2.17)
daT,, ;
dvtv‘l = Cs(Thi — Tw,) — Ce(Tw,i — Tc,) (2.18)
2m AU, -
= _h, C= rl (2_19)
Vhp Vhpcy
21 AU.. :
=T O (2.20)
Vep V.pc,
2k A2kUp; 2k A2kU;
C _ (AT_ lah,i ) _ (AT_ lac,i ) (221)
’ Vwpcyp ' Vwpcy
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In Equation (2.16), (2.17) and (2.18), the coefficients are indicated as C, where physical
properties and constants are denoted. The coefficients are given in Equation (2.19),
(2.20) and (2.21). The overall heat transfer coefficient, U, represents the combination
of conduction, convection and fouling thermal resistance coefficients as shown in
Equation (2.22) and (2.23).

1
Uh,i = (_ + l/2k+Rf’h)_1 (222)
Qh,i
1
UC,i = ((X_ + l/Zk + Rf'c)_l (223)
c,i

The differential equations shown in Equation (2.16), (2.17) and (2.18) are solved by
using Runge Kutta 4™ order method. The Runge Kutta method is used for solving the
ordinary differential equations (ODE). In solving methodology, the coefficients are
calculated and the next step in time is calculated in the main equation (Equation
(2.24)). The coefficient calculations are given in Equation (2.25), (2.26), (2.27) and
(2.28).

Vigr =yi +1/6(ky + 2k, + 2ks + ky)h (2.24)
ki = f(t,yi) (2.25)
1 1
k, =f(t; + Eh' Vi + Eklh) (2.26)
1 1
ks =f(t; + Eh, v + Ekzh) (2.27)
ky, = f(ti + h,y; + ksh) (2.28)

Here, in the equations, h stands for time step, t is time. The y represents the temperature
of hot and cold channel, and plate in our calculations. The differential equation solvers

are used for hot and cold channel, and plate.
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2.3 Data Implementation of Partial Blockage
Assessment

The assessment of partial blockage process is represented in titles of data grouping,

data importing and model training.

2.3.1  Data Grouping

The supervised machine learning algorithms need a known set of input data grouped
as predictors, i.e., parameters, and known responses to the data, like classes or labels.
Here, during preprocessing the experiment data, 6 cases are created regarding to

grouping the data by responses and predictors. The cases are listed in Table 2.2.

In 1% case shown in Table 2.2, the inlet and outlet temperatures, the pressure drops and
the flow rates of CH and DHW channels are used as predictors, while the test
conditions, i.e., Test 1 to 17 as shown in Table 2.1, are used as responses. Test 1 and
Test 10 are representing the healthy value, therefore they grouped as Zone 0. Test 2
and Test 11 are representing the clogging of 2 plates, i.e., faulty value, thus they
grouped as Zone 2. Similarly, Test 3 and 12 are Zone 3, Test 4 and 13 are Zone 4, etc.
In the end, Test 9 is the only one in which the clogging of 16 plates effects is tested

and represented as Zone 8.

In 2", 3" and 4™ cases, the calculated overall heat transfer coefficient (U) is used as
predictor. In 3" case, to reduce the group number, the test results corresponding to the
test conditions, i.e., Zone 0 to 5, are grouped in 2, e.g., results of Zone 0 and Zone 1
are grouped as Group 1, etc. The final group is created for Zone 6,7 and 8. The clogging
plate numbers in the tests, can be represented as clogging percentage as well. The
maximum clogging level indicates 50% clogging in PHEs for evaluating the clogging
of 16 plates of 32 plates PHE. The clogging percentages are calculated for each test

and are represented in 4™ cases as percentage groups, from 0-10% clogging to 40-50%

clogging.
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Table 2.2: Experiment data grouping cases according to predictor and response group

Case Predictor Response Group
1 e CH inlet temperature e Zone0
e DHW inlet temperature e Zonel
e CH outlet temperature o Zone2
e DHW outlet temperature e Zone3
e CH flow rate e Zone4d
e DHW flow rate e Zonebd
e CH pressure drop e Zoneb
e DHW pressure drop e Zone/7
e Zone$
2 e Overall heat transfer e Zone 0
coefficient e Zonel
e Zone 2
e Zone 3
e Zone 4
e Zoneb5
e Zone 6
e Zone 7
e Zone 8
3 e Overall heat transfer e Group 1
coefficient e Group 2
e Group 3
e Group 4
4 e Overall heat transfer e 0-10%, P1
coefficient e 10-20%, P2

e 20-30%, P3
e 30-40%, P4
e 40-50%, P5

5 e CH pressure drop e Zone 0

o DHW pressure drop . ;Oﬂe ;
e Zone

e Zone 3
e Zone 4
e Zoneb
e Zone 6
e Zone 7
e Zone 8
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Table 2.2 (continued): Experiment data grouping cases according to predictor and
response group

6 e CH inlet temperature e Zone 0
e DHW outlet temperature e Zonel

e DHW flow rate e Zone 2
e Zone 3

e Zone4d
e Zoneb
e Zone 6
e Zone7
e Zone 8

In 5" case, the pressure drops of CH and DHW channels are used as predictors to see
if the only parameters known would be the pressure drops which would be the
performance of the machine learning algorithms classification. In similar, the CH inlet
temperature, DHW outlet temperature and DHW flow rate are used as predictors in the
6'" case to see if the algorithm performance would be sufficient with these parameters.
These parameters are selected because they are measured during real life operation in

combi-boiler.

The test conditions are representing the fouling levels as they are representing the
customer comfort. Therefore, the test conditions and the categorized levels, e.g., Zone
0 to 8, show the customer comfort levels. The higher the heat transfer rate, the higher
the customer would achieve the desired comfort. Thus, the comfort is decreasing while
the fouling is increasing. The zone categorization shown in Figure 2.6, is representing
the comfort levels corresponding the zones. Zone 0, as Test 1 and 10, indicates the
zero-hour performance of the PHEs, i.e., there is no fouling on plate surfaces. The
customer comfort and heat transfer rate are at maximum in Zone O; thus, the
categorized region is named full comfort. While the fouling is increasing, the comfort
loss starts. In Zone 1 and 2, the status of fouling is represented as mostly comfort
region. Here, there are unnoticeable effects on the heat transfer rate by customer yet.
The 3" region is named partial comfort loss which is associated with Zone 3 and 4.
Here, customer may notice a lack of heat transfer rate. There may not have the same
performance to heat the DHW when compared to the zero-hour performance anymore.

In the 4" region, there are serious comfort loss corresponding to Zone 5 and 6, that
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customers can notice. Here, the performance of PHE is likely to be affected seriously
by fouling on plate surfaces. In the last region, partial clogging is expected in the plates
of PHE that can affect the heat transfer rate extremely. In this point, the PHE might
need to change not to affect and prevent the required customer comfort and it is

represented with the categorized Zone 7 and 8.

Deviation from 0-hour performance

Zone 7&8

Zone Categorization

Zone5&6 ¢

Zone 3&4 o
Zone 1&2 Pﬁ;ﬁﬂ :
Zone 0
Comfort Loss
Mostly (might be

< Fl;li-bumfort Co qrtable noticeable in some
. (unnoticeable

0y Foct cases due to lack

effects) of heat transfer)

Time

Figure 2.6: The zone categorization of customer comfort regarding fouling

2.3.2  Data Importing

During classification, the algorithm should find the target class for a new data sample
that is not categorized yet, given a set of training data and corresponding training
classes [25]. The classification process has two steps. One is training and the second
one is the testing step. In the training step, a model is constructed from the training
data that is generated from the experiments. In the testing step, the constructed model

is used to classify the test data which is taken from experiments also.

The experiment data is imported into the programming platform called MATLAB. The
classification process is conducted in the Classification Learner App inserted in
MATLAB. Classification Learner App is used for training the models with given
training data to classify new data, i.e., supervised machine learning. Here in the app,

the validation schemes, models to be trained and result assessment tools have existed.
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The data splitting for training and testing data has crucial points. During this splitting
process, the k-fold cross validation technique is used. The k-fold cross validation
technique is commonly used for avoiding overfitting or underfitting. The k-fold cross
validation splits the data into k number subsets, i.e., folds, in equal size. In each fold,
one part of data is used to train the model, and the other part of the data is used to test
the model. And in each fold, the testing data part is another 20% parts of the main data.
The partition of data by k-fold cross validation techniques is shown in Figure 2.7. Each
fold runs and obtains a learning accuracy for each fold. The final prediction accuracy
of the used model is calculated by averaging the learning accuracies obtained for each
fold. The fold number, k, is chosen as 5 in this study.

Fold 1 Training Data
Fold 2 Training Data Training Data
Fold 3 Training Data Training Data
Fold 4 Training Data Training Data
Fold 5 Training Data
0% 20% 40% 60% 80% 100%
Data Amount

Figure 2.7: The k-fold cross validation representation

2.3.3  Model Training

Each classification model is unique with its strength and weaknesses regarding the
case where it would be used. Choosing the right model generally requires a trial and
error method to get the balance of performance and accuracy. Therefore, 3 models,
Naive Bayes, decision tree, and k-nearest neighbors are chosen in this study to

investigate their performance and accuracy.

The Naive Bayes classifier is a straightforward probabilistic classifier that uses the
Bayes theorem along with strong (naive) independence assumptions. The Bayes
theorem is used to obtain the posterior probability within the Naive Bayes classifier.
The posterior probability is the probability of which class a particular data may belong
to, while the probability of selecting a particular data from a class is called prior

probability. In the training step of Naive Bayes, with the given class and data, first, the
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prior probabilities are calculated, then the posterior probability will be the output for
possible classes. If we assume the classes, in this study, are named zones, are denoted
as y and the features (predictors) are denoted as x. The main task in Naive Bayes
classification is giving the posterior probability, i.e., the probability of which y, a x
may belong, using the Bayes theorem shown in Equation (2.28) [25]. Here the k
denotes the random variable corresponding to classes (y), j denotes the random
variable corresponding to predictors (x), p denotes the number of predictors (x), and K
denotes the number of classes (y). P(y = k|x,, - xp) denotes posterior probability,
while P(x;|y = k) denotes prior probability. P(y =k) denotes the marginal

probability which is the probability of selecting the class among the total classes.
14
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Naive Bayes classifier is a model that has high bias and low variance characteristics.

P(y = klxy,--xp) = (2.28)

High bias refers to the error between the real class and variance refers to the ability to
achieve approximate accuracy with different training sets. This characteristic of Naive
Bayes classifier provides decreasing in risk of inaccurate predictions but has the
probability of not properly matching the data set to the model. The Naive Bayes model
is supported by various distributions in Classification Learner App. The kernel
distribution is selected. Therefore, after that the chosen model would be named Kernel
Naive Bayes in this study. The kernel distribution is a function that is used in non-
parametric estimations. Non-parametric estimators do not have a defined structure and
rely on all data points to conclude. To see if the performance of the algorithm that
would be placed in a combi-boiler during operation in real life would be sufficient or
not with independently read parameters, the kernel distribution is used. There are
several kernel functions that MATLAB provides as inaccessible content. In this study,

triangle named kernel distribution is used.

Decision trees are used for both classification and regression. Here the usage of the
decision tree algorithms is determined as classification. This model also can be called
as classification tree. A decision tree can be considered as a predictor that predicts the

class corresponding to an instance data by partitioning the given training data into the
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labeled data. It is shown as a road from root to leaf and nodes in between. An example
of a decision tree can be seen in Figure 2.8. At each node on the paths, a selection of a
response according to the condition is generated until it reaches the final classified
leaf. The classification decision trees are binary. So, each step in a prediction, checking
the condition and deciding a response as 1 for true or O for false are involved in the

process [26].

Root Node

Leaf Internal Node

Leaf

Classified labels Classified label

Classified labels

Figure 2.8: Decision tree example and tree designation

During the classification process, many algorithms is used to determine the creation of
the tree. CART (Classification and Regression Trees) is used in this study as
mentioned due to classification output being required. The second step that has crucial
impact on the creation of the tree, is determining the attributes. There are various
attribute selection techniques, i.e., splitting criterion, the Gini index which is used in
this study is quite popular in the literature [27]. A decision tree determines how to split
nodes either according to impurity or node error. The Gini index is based on impurity.
A node with only one class, i.e., a pure node, has a Gini index of 0, while other nodes
are having a positive Gini index. Thus, the Gini index would be a measure of node
impurity. The impurity The Gini index splitting criterion can be expressed as the error
that would be encountered if each item were categorized at random using the
probability distribution of class labels within each subgroup [25]. The Gini index can
be found as shown in Equation (2.29). Here, for any node x and class y, with total class

number k, p, (x) denotes the probability of an instance being classified to a particular

class [28].
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k
Gini(x) =1 — zyzl(py(x))z (2.29)

The k-nearest neighbors (KNN) classifier model provides a label based on the dominant
class in the region, i.e., neighborhood, by locating a cluster of k training set objects
that are closest to the test data. The two fundamental elements of this approach are a
distance metric to estimate distance between objects and the number of nearest
neighbors which is denoted as k to classify unlabeled data. To determine its nearest-
neighbor list, I,, the KNN model calculates the similarity distance between a training
set, (x,y) € I, and test data, z = (%, ). Here, X represents the training instance, and y
represents the corresponding class, while £ and y represent the test instance and its

class, respectively. The algorithm can be shown in the steps listed below [27]:

- Import training set (x, y), and testing set z = (X, y) as inputs.

- Calculate the distance d = (&, x), between each instance in training data and
testing data.

- Select the nearest neighbor list, I, € I, which is the set of k closest training
instances to testing instances, z.

- Compute the output, i.e., the testing classes which are the target, ¥, by using
Equation (2.30).

y = arg,max Z Flv=y;) (2.30)

(xiYi)El,

Here in Equation (2.11), F(v) will be resulted as 1 if the argument, v, is true and 0
otherwise. The v is the class label [27]. The operation of the KNN model highly
depends on the k number selection, which is mentioned in the third step of the process.
Choosing the k number as 1, results in 0 error and 100% accuracy, due to it being
classified as itself [29]. This is not a required solution. By choosing this, the model
will be overfitted to the training and the trialed test set and provides a very low, nearly
zero bias. This results in an increase in the dependence of the model on the selected
test and training data set, i.e., the variance of the model will be too high. The optimal
result of the model that is tried to be achieved is high bias but low variance
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characteristic. To obtain this required solution by KNN model, the k number should be
increased [29].

B
\J

ﬁog @ e
Zna / iR

(a) k=1 (b) k=15

Figure 2.9: Voronoi diagram of kNN algorithm for k=1 and k=15 [30]

As can be seen in Figure 2.9, the KNN model sets the nearest neighbor list according
to k number. The shown orange and blue classes are classified by KNN algorithm for
k=1 and k=15 in Figure 2.9. As mentioned, when the k number is selected as 1, the
classes are distinguished as too specific to the training data, whereas when the k
number is selected as higher than 1, the bias is increasing yet the variance, i.e.,
sensitivity to the training set is decreasing. But at one point, if k is selected as too large,
the model will underfit the training data, i.e., the bias will be too high that cannot fit
almost the training data at all [31]. In this study the k number is chosen as 10.

In the mentioned process step, which is computing the k closest training data points to
testing data, the closeness can be quantified with distance functions. The Euclidean
distance is used. As it is mentioned in the second step of the process, the distance d is
calculated by the Euclidean distance method, which is just computing the tangent
distance between each test data instance and each training data instance. The Euclidean

distance is calculated by using the basic expression shown in Equation (2.31) [30].
d; = |lx; — %l (2.31)
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Chapter 3

Results and Discussion

3.1 Experiment Results

The 30 and 32 plates PHEs are tested by measuring pressure drops and outlet
temperatures of both channels, CH and DHW whereas inlet temperatures and volume
flow rates are given as input. The results are grouped as shown in the cases listed in
Table 2.2. As given in Table 2.2., there are 3 different groups for responses, Zone 0 to
Zone 8 grouping, grouping zones by 2 and clogging percentages grouping. These
response cases are rearranged by normalizing the data. For Zone 0 to 8 grouping, the
zones are considered as time as they are the representation of fouling and clogging by
time. So, the zones are normalized between O to 1. The procedure is applied to the

other response grouping cases as well.

During experiments, 300-500 pieces of data are acquired for each test. The results data
that is obtained from each test condition are grouped as same and represented in Figure
3.1and 3.2 as a data group colored in the same. In Figure 3.1 the experiment results of
30 and 32 plates are represented. As expected, while the clogging plate number that is
simulated with tests is increasing (shown in normalized time), the CH outlet
temperature is increasing while the DHW output temperature is decreasing. The
increase of CH outlet temperature is a demonstration of decreasing heat transfer. The
heat that the CH inlet flow has cannot be transferred as in the zero-hour performance.
Similarly, the DHW output has not gained the heat as in the zero-hour performance
which is the reason gives the lack of comfort to customers. While fouling and clogging
are increasing, the layer of fouling creates hedges to the flow. This results in an
increasing pressure drop. The pressure difference results show the expected increase

while clogging levels are increasing.
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Figure 3.1: The experiment results of 32 and 30 plates PHES in normalized time; a)
DHW outlet temperature, b) CH outlet temperature, c) pressure drop of DHW

channel, d) pressure drop of CH channel.

The overall heat transfer coefficient for each data is calculated as in Equation (2.7).
The results are shown in Figure 3.2 and 3.3 for 32 and 30 plates PHEs, respectively.
The decreasing trend is a representation of the decreasing heat transfer as expected.
The overall heat transfer coefficients of 32 plates are larger than the coefficients of 30

plates as shown in the graphs.
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Figure 3.2: The calculated overall heat transfer coefficient for 32 plates PHE in the

normalized time scale
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Figure 3.3: The calculated overall heat transfer coefficient for 30 plates PHE in the

normalized time scale

During the fouling resistance coefficient evaluation, the required convection heat
transfer coefficient calculation is carried out by using the Sieder-Tate Nusselt number
correlation, as shown in Equation (3.1) [32]. This Nusselt correlation can be used when
the conditions are given in Equation (3.2), (3.3) and (3.4) [32]. The Prandtl number,
Reynolds number and dynamic viscosities are given in Table 3.1. The value of the
length of the plate over the hydraulic diameter is 54.5 for 32 and 30 plates PHEs.

Nu = 0.27Re®8Pr*/3(us /)" (3.1)

In Equation (3.1), The Nu represents the Nusselt number, Re is the Reynolds number,
Pr is the Prandtl number, u is the dynamic viscosity of the fluid at fluid film
temperature, i.e., water and pu, is the dynamic viscosity of the fluid at wall
temperature, i.e., plate. The wall and initial temperatures are accepted as the same as
the cold channel water inlet temperature when the model is structured. The film
temperature is calculated by taking the average of the cold channel and hot channel

inlet temperatures.

07<Pr<16 (3.2)

Re > 10,000 (3.3)
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L/D =10

Table 3.1: The properties of the hot and cold channel

(3.4)

Prandtl Dynamic Dynamic
Hydraulic viscosity viscosity
" Reynolds  Number at
diameter : (Pas) at the (Pas) at
Number the film !
(m) film plate
temperature
temperature temperature
Hot . B .
39 channel 0.0035 2.7x10 4.495 0.652x10 1.306x10
Plates
PHE
gt?a:gnel 0.0035 1.6x10° 4.495 0.652x10°  1.306x1073
Hot 5 B .
30 channel 0.0035 2.3x10 4.495 0.652x10 1.306x10
Plates
PHE
gr?a:gnel 0.0035 0.9x10° 4.495 0.652x10°  1.306x1073

The Reynolds number is calculated by Equation (3.5). The p denotes the density, V

denotes the velocity of fluid, D, denotes the hydraulic diameter, and u denotes the

dynamic viscosity of fluid. The density and dynamic viscosities are taken at film

temperature. The velocities are derived from the volume flow rates which are

calculated by using the geometric properties of PHEs and mass flow rates. The

hydraulic diameter is calculated by Equation (3.6), where A, is cross-sectional area

and p is the wetted perimeter of channel. The hydraulic diameter and relatively

Reynolds number are calculated for both hot and cold channel of 32 and 30 plates

PHEs, as shown in Table 3.1.

pV Dy
e =
u
4A
D, = —=
4
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After calculating the Reynolds number and with known Prandtl number and dynamic
viscosities the Nusselt numbers are calculated by using Equation (3.1), the values of
its given in Table 3.2.

Table 3.2: The Nusselt number calculated by correlation for hot and cold channel

Nu calculated analytically by correlation

32 Plates 30 Plates
Hot channel 8.91x10° 7.85x10°
Cold channel 6.12x10° 3.88x10°

The convection heat transfer coefficients are calculated by Equation (3.7) where the k
is thermal conductivity of fluid and D, is hydraulic diameter. The thermal conductivity
of fluid is taken at film temperature. The convection coefficients that are calculated

analytically by Nusselt number correlation are listed in Table 3.3.

_ Nuk

=D (3.7)

Table 3.3: The convection heat transfer coefficients

Convection heat transfer coefficient
calculated analytically (W/m?K)

32 Plates 30 Plates
Hot channel 1.01x10° 1.41x108
Cold channel 1.60x108 0.69x10°

After the convection heat transfer coefficients are calculated, the conduction
coefficient of plate is also calculated as designated in Equation (2.8). The found result
is 0.00022 W/mK.

The fouling resistance coefficients that are calculated are shown in Figure 3.4 and 3.5
for 32 and 30 plates PHEs, respectively. As expected, when the decreasing overall heat

transfer coefficient is considered while the fouling is increasing, the fouling resistance
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coefficients are increasing. These data are also represented in the normalized time
scale as it is in the representation of the overall heat transfer coefficient.
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Figure 3.4: The calculated fouling resistance coefficients of 32 plates PHE
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Figure 3.5: The calculated fouling resistance coefficients of 30 plates PHE

The reference study evaluated by Zhang et.al. shows the result of the fouling resistance
values with time [6]. The used method to create the fouling environment in PHES is
adding the particulates into the test rig. Therefore, an accelerated fouling effect
observation is carried out in the study. There are two types of fouling tested, one is
particulate fouling which only the Al,O3 accumulation is observed and the other one
is composite fouling which the CaCl, and NaHCOs3 precipitation is observed together

with Al2Os. In both tests, the fouling resistance results show both the asymptotic
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increasing and parabolic increasing. The fouling resistance coefficients in this study
show a similar increase to the results shown in the study of Zhang et.al [6]. However,
the fouling resistance values show differences between the referenced study and this
study. The average of the calculated fouling resistance values is approximately 2x10°
m?K/W, while the magnitudes of fouling resistance coefficients in the referenced study
are the value times 10*. This difference originated from the test method differences
between the studies. The accelerated fouling test shows a much larger accumulation
and lack of heat transfer than the results found from the generated artificial fouling test

method in this study.
3.2 Numerical Model Results

The model is structured in MATLAB, by using Runge Kutta 4™ order method as
mentioned. The Runge Kutta 4™ order method is referenced from the study by Bobic
et al. [33]. Therefore, once the model is created, the parameters are used to validate
the model with a reference study. The temperature of the hot channel inlet is given in
referenced study as 52.4°C and temperature of the cold channels is given as 18.5°C.
Both hot and cold channel have the same mass flow rate, which is 0.113 kg/s. The
initial temperature of the plate is assumed as the same temperature as the cold channel
inlet temperature. The step time of model is stabilized by running the model for the

parameters of the volume elements number.

In the reference study of the model results obtained [33], the published hot channel
temperature distribution was seen to have similar behavior. For the initial and
boundary conditions used in the reference study given above, it was reported that the
system reached stable conditions within 5 seconds after starting from the initial status
of the system and the hot channel output temperature was approximately 27 ° C in the
experimental results performed with the thermal camera [33]. In the validation study,
the hot channel outlet temperature for the same time was found to be 29 ° C (Figure
3.6). Time-dependent temperature distribution is compatible with the model results.
As a result, reached steady state status is a parameter indicating the accuracy of the
model (Figure 3.7). In the validation of the reference study, the time-related graph and
location of the hot and cold channel temperatures obtained were given (Figure 3.8).

The number of locations indicated in Figure 3.8 on the Y axis is determined by leaving
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the cell with the starting limit and the graph was formed. According to this validation

study, it was concluded that the model runs correctly.
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Figure 3.6: Temperature distribution of hot channel inlet and outlet by time in
validation of reference study
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Figure 3.7: Heat transfer rate change by time of hot and cold channel in validation of
reference study
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After validation study, the parameters of PHESs have 32 and 30 plates applied to the
model. In the first part of the study, the healthy conditions were examined by using the
32 and 30 plate PHEs flow rates and inlet temperatures. As in the validation study,

steady state status is reached as shown in Figure 3.9 and 3.10 for 32 and 30 plate PHE,
respectively.
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Figure 3.9: Heat transfer rate change by time for 32 plates PHE
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Figure 3.10: Heat transfer rate change by time for 30 plates PHE
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Different Nusselt number correlations are used to create the optimum model that gives

similar results when it is compared with the test results. The used Nusselt number

correlations are given in Table 3.4. Nusselt number correlation 1 is derived from

Nusselt number correlation 3 [32] to obtain the optimum model results. The correction

factors are changed due to different Reynolds number values of hot and cold channels.

Table 3.4: The Nusselt number correlations and corresponding convection heat

transfer coefficients used in the model

Convection heat
transfer coefficient

(W/m2K)
32 Plates 30 Plates
Nusselt number correlations PHE PHE
Hot 1u 8.9x10° 7.8x10°
channel Nuy, = 0.15Re®8pr3("/ i)t
1
Cold 1 3.26x10°  2.1x10°
channel Nu, = 0.08Re®®Pr3("/, 1014
Hot 1.4x10°  1.26x10°
channel
2 Nu = 0.023Re%8py03
Cold 0.98x10* 6.23x10*
channel
Hot 1.6x10° 1.4x108
channel L
3 Nu = 0.27Re®8Pr3("//, 1014
Cold w 1.1x10° 6.9x10°
channel
Hot
channel
4 - 59430 58703
Cold
channel

The 2" case of Nusselt number correlation is commonly used Dittus-Boelter Nusselt

number correlation [32]. In the 4™ case, the convection heat transfer coefficients that

are taken from CFD simulations are used. The CFD simulations were carried out as a

background study in Bosch Thermotechnology. The details of the study would not be

appropriate to be shared due to the legislation of the patent taken by the company itself.
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The convection heat transfer coefficients are calculated as an average area weighted in
3D CFD simulations of whole body of PHE. The results of the used correlations are
represented in Figure 3.11 and Figure 3.12. The outlet temperature of the hot and inlet
channel is depicted in the figures. The 3™ case, Dittus-Boelter Nusselt number
correlation, shows similar outputs with test results. However, the derived Nusselt
number correlation, 1% case, shows better results with the test results. The outermost
result is seen in the 4™ case, when the convection heat transfer coefficients taken from
CFD results are used. The 1% case results are similar for 32 and 30 plates PHEs.
Therefore, the derived Nusselt number correlations are selected to be used for the
further model calculations.
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Figure 3.11: The Nusselt number correlation comparison for 32 plates PHE

After selection of the optimum Nusselt number correlation, the model results for
healthy conditions are shown in Figure 3.13, 3.14, 3.15, 3.16, 3.17 and 3.18. The
temperature distribution of wall (plate), hot and cold channels are shown. Again, the
outlet temperatures of hot and cold channels from test results are indicated in the
figures. The results show that the model can give compatible temperature distribution
evaluation with test results for 32 and 30 plates PHEs.
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Figure 3.12: The Nusselt number correlation comparison for 30 plates PHE
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Figure 3.13: The temperature distribution of hot, cold channels and wall by position
for 32 plates PHE
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Figure 3.14: The temperature distribution in contour of hot, cold channels and wall
by position for 32 plates PHE
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Figure 3.15: The temperature change of hot and cold channels by time for 32 plates
PHE
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Figure 3.16: Temperature distribution of hot and cold channels by position for 30
plates PHE
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Figure 3.17: Temperature distribution in contour of hot and cold channels by position
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Figure 3.18: The temperature change of hot and cold channels by time for 30 plates
PHE

In the results, the stabilization of the outlet temperatures is achieved less than 2
seconds. Therefore, the final time is selected as 2 seconds even though the cell size is
selected as 10 as in the reference study. Considering the time step, flow and number
of cells, the compatibility of the fluid in a time step was taken into consideration and

the time step was selected as 0.01 seconds.

As a second validation, the model results were compared with the test results. The
outlet temperatures of the hot and cold channels from test results and model results are
also given in Table 3.5 for 32 and 30 plate PHESs. The cold channel (DHW) temperature
for both types PHEs is closer than the hot channel (CH) temperatures for 32 plates of
PHE, in contrast to the results of 30 plates of PHE. The errors are lower than 2%,
therefore they are considered acceptable. As a result of the second validation, the

model is considered as correct.
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Table 3.5: The comparison of model and test results

32 plate PHE 30 plate PHE

Model Test Error Model Test Error

Results Results (%) Results Results (%)
Hot
channel 456°C 448°C 178  506°C 509°C 058
outlet
temperature
Cold
channel 522°C 51.9°C 057  614°C 608°C 097
outlet
temperature

In the second part of the modeling study, the fouling resistance coefficients are used.
The calculated fouling resistance coefficients from experiments are used in the model
as shown in Equation (2.22) and (2.23). The main goal is validating the model accuracy
for PHEs when the fouling resistance coefficients are taken into consideration. The
expected result is that model should give the similar results to the experimental result
based on the change in outlet temperatures caused by fouling. The model and test

results are given in Figure 3.19 and 3.20 for 32 and 30 plates PHES, respectively.
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Figure 3.20: Comparison of model and test results based on fouling resistance
coefficients for 30 plates PHE

In the results of the comparison of the model and test results based on fouling
resistance coefficients, normalized time is considered as before when the experimental
results are given. As in the comparison of the model and test results for faulty
conditions, the hot channel (CH) temperatures are closer than the cold channel (DHW)
temperatures. For 32 plate PHE, the hot channel model results are significantly close
to the testing results. The difference in the worst case is lower than 2°C. This tolerance
is considered acceptable and enough to evaluate that the model is running correctly.

The cold outlet temperature is the determining factor for customer comfort in combi-
boiler appliances. The cold outlet temperature change during fouling for 32 and 30
plates PHE by normalized time is given in Figures 3.21 and 3.22. The indicated
reference value of cold outlet temperature is the one that is representing the ideal case,
where no fouling is seen. The cold outlet temperature should be within the tolerance

of 1% as indicated in the figures with the reference value in case there is no fouling.

The created model provides a calculation of the required CH (hot channel) temperature
to achieve the reference cold channel outlet temperature. When the maximum fouling

case that was evaluated (Zone8) is considered, the required hot channel inlet
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temperatures to obtain the required cold channel outlet temperature by the customer as
a setpoint are given in Figure 3.23 and 3.24.
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Figure 3.21: Change of cold channel outlet temperature during fouling for 32 plates
PHE
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Figure 3.22: Change of cold channel outlet temperature during fouling for 30 plates
PHE
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Figure 3.23: Temperature distribution of the response of the hot channel to reach the
required ideal cold channel temperature in case of maximum fouling for 32 plates
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Figure 3.24: Temperature distribution of the response of the hot channel to reach the
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The existence of the fouling layer on the plate surfaces causes a decrease in customer
comfort. Reaching the required setpoint of DHW defined by the customer needs more
energy when there is fouling. This leads to an increase in energy consumption, i.e.,
natural gas consumption. The required additional power to reach the setpoint when

there is maximum fouling is calculated.

The setpoints for 32 and 30 plates are selected from the test outputs (Table 3.4). As
shown in Figures 3.23 and 3.24, CH inlet temperature should be 81 and 77 °C to reach
the setpoints that are 51.9 and 60.8 °C at maximum fouling case. The appliance should
heat up the water in the heat cell (primary heat exchanger) up to these temperatures to
reach the required setpoint temperature in DHW. The required additional power is
calculated for 32 and 30 plate PHEs. The maximum required additional powers are
shown in Table 3.6. The power changes by fouling, i.e., fouling zones, are shown in
Figure 3.25 and 3.26 for 32 and 30 plates PHEs, respectively.

Table 3.6: The comparison of model and test results

CH inlet Additional
temperature required

Assumed DHW outlet to reach the power to
setpoint of  temperature setpoint at reach the
DHW outlet at maximum CH inlet maximum setpoint at
temperature fouling temperature fouling maximum
(required) (model in case no (response) fouling
(°C) results) (°C) fouling (°C) (°C) (kW)
32
Plates 51.9 47.1 72 81 16
PHE
30
Plates 60.8 57.3 72 77 7
PHE

The heat output when there is no fouling is approximately 50 kW for 32 and 35 kW
for 30 plates PHE. With the additional required power, the heat outputs to reach the
setpoint in case of maximum fouling are 66 and 42 kW for 32 and 30 plates PHEs,
respectively. The amount of natural gas consumption is approximately 0.5 m®h for 50
kW appliances and 0.35 m%h for 35 kW appliances. The required natural gas

consumption to reach the setpoint in case maximum fouling would be 0.66 and 0.42
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m3/h for 32 and 30 plates PHES, respectively. The price of 0.1 m%h natural gas is 2.6b
as of 01.10.2022 from Enerji Piyasalar1 Isletme A.S. (Energy Market Operation Inc.).
Therefore, the additional costs are 83.2 and 36.4 b for 32 and 30 plates PHEs,
respectively.
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Figure 3.25: Change of additional required power to reach the setpoint by fouling in
normalized time for 32 plates PHE
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Figure 3.26: Change of additional required power to reach the setpoint by fouling in
normalized time for 30 plates PHE
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3.3 Algorithm Results

The three algorithms, Naive Bayes, k-nearest neighbors and decision tree models are
applied to each case listed in Table 2.2. In each case, the training set and testing set is
selected with k-fold cross validation to avoid overfitting as mentioned in 2.2.2. The
main results are calculated as accuracy. The data implementation and model training
processes are evaluated in the Classification Learner App in MATLAB programming
tool as shown in Figures 3.27 and 3.28. During data implementation, the features, i.e.,
predictors are in the type of double integer while the responses are in the type of
categorized data. Thus, the application can distinguish the training predictors data and
corresponding training classes as can be seen in Figure 3.27.

The classified training data for Case 1 is shown in a scatter plot in Figure 3.29, where
the DHW outlet temperature is on x-axis and CH outlet temperature is on y-axis. The

distribution of the training data shows the distinguishability of the training set.
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Figure 3.27: The data implementation in Classification Learning App in MATLAB.
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In Figure 3.29, the data can be separated easily, in contrast to Figure 3.30, where the
DHW inlet and outlet temperature distribution is shown. The zones, i.e., training
classes are not very easily distinguishable when it is compared to Figure 3.29. This
inference results in the generation of other cases, to see the difference between the case
with selected all parameters and the case with selected fewer parameters.

For Case 1, three algorithms are applied with different features are shown with the
accuracies in Table 3.7. For the decision tree model, Gini’s Index is used as a split
criterion and four different maximum number of splits are applied. As can be seen in
Table 3.7, there is no difference between the accuracies even the maximum numbers

of splits are changed.
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Table 3.7: The accuracies of Case 1 according to model features

Models Features Accuracy (%)
Maximum number of
splits=100 9.0
Maximum number of 99.0
Decision Tree splits=85 '
(Split criterion=Gini’s Index) Maximum number of
o 99.0
splits=50
Maximum number of
splits=25 9.0
Kernel Naive Bayes Support=Positive 99.9
(Kernel type=Triangle) Support=Unbounded 99.9
Number of neighbors=1 99.5
k-nearest neighbors Number of neighbors=10 96.4
(Distance metric=Euclidean) Number of neighbors=15 95.1
Number of neighbors=50 84.6

The confusion matrix is used to show the detailed prediction accuracies of each class
of a model. In Figure 3.31, the confusion matrix of the decision tree model for Case 1
is shown. Here, the TPR indicates the true positive rates which is the rate of true
predicted data overall data and FNR indicates the false negative rates which is
similarly the rate of false predicted data overall data. When the overall accuracy of the
decision tree model for Case 1 is considered as 99.0%, the FNR values are expected
to be this small. The highest FNR value is seen in the prediction of 3" class, i.e., Zone
3. The model predicted the 2.9% data of Zone 3 as Zone 4. The model is successfully

predicting the data from Zone 5 and Zone 8.
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Figure 3.31: The confusion matrix of Decision Tree model for Case 1.

The classification tree with nodes and leaves is given in Figure 3.32 for the maximum
number of splits is 100. The algorithm trains itself by selecting the pressure difference

of DHW for the main node. This shows that pressure difference data gives more precise

distinguishability than the other predictors.
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For the Kernel Naive Bayes model, the “triangle” kernel type is selected. The Naive
Bayes model is trained based on the independence of predictors. However, both the
support  functions, positive indicates dependency and unbounded indicates
independency, are applied and it is seen that the accuracy is not changed. This shows
that Naive Bayes model is valid for this case whether the predictors are independent

of their or not.

Kernel Naive Bayes

1 100.0% 100.0%

2 99.7% 0.3%

3 100.0% 100.0%

100.0%

True Class
s
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71 0.4% 99.6% 99.6% YA

0 1 2 3 4 5 6 7 8 TPR  FNR
Predicted Class

Figure 3.33: The confusion matrix of Kernel Naive Bayes model for Case 1.

In Figure 3.33, the confusion matrix of Kernel Naive Bayes model is given. The overall
accuracy for both features is obtained as 99.9% which results in overfitting. The data

is successfully classified by the model except for Zone 2 and 7.

The k-nearest neighbor model is applied with the various number of neighbors. The
number of neighbors is selected as 1, 10, 15 and 50. The best accuracy is achieved
while the number of neighbors is selected as 1. This results in when all parameters are
used as predictors, the training data and test data would be similar and therefore the
model is too much fitted to the training data, yet it is achieved to the highest accuracy.

The model that has the lowest accuracy with the number of neighbors 50, is represented
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in the confusion matrix in Figure 3.34. The highest FNR value is seen at Zone 3. The
53.4% of data that classified as Zone 3 is predicted as Zone 2. The false prediction of
data classified as Zone 3 is also seen in decision tree algorithm. When the data
distribution in Figure 3.29 is considered, Zone 3 and Zone 2 have similar ranges, they
are hard to be distinguished. Thus, the highest FNR values are seen between these

Zones.

k-Nearest Neighbor

0 1.9% | 2.9% 95.2% EERYH
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27.9% 7.0% 34.9%

2| 47% | 83% [RLWEZE 0.8% WAl 13.8%
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4.1% | 6.4% 89.1% RIS
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6 4.0%

14.7%

0 1 2 3 4 5 6 7 8 TPR  FNR
Predicted Class

Figure 3.34: The confusion matrix of k-Nearest neighbor model for Case 1.

For Case 2, as it is listed in Table 2.2, the overall heat transfer coefficient is used as a
predictor, whereas the responses are kept the same as in Case 1, from Zone 0 to 8. The
same features that are used for the models in Case 1 are applied to Case 2. In contrast
with the achieved accuracies in the Decision Tree model for Case 1, the obtained
accuracies of the decision tree model for case 2 are changing with a maximum number
of splits. The highest accuracy is achieved for the decision tree model with a maximum
number of splits of 25. Additionally, the lowest accuracy is seen for the Decision Tree

Model with a maximum number of splits between 100 and 85.
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Table 3.8: The accuracies of Case 2 according to model features

Models Features Accuracy (%)

Maximum number of
splits=100 41
Maximum number of 94.7

Decision Tree splits=85 '

(Split criterion=Gini’s Index) Maximum number of

. 94.4
splits=50

Maximum number of
splits=25 »8
Kernel Naive Bayes Support=Positive 95.7
(Kernel type=Triangle) Support=Unbounded 95.7
Number of neighbors=1 94.1
k-nearest neighbors Number of neighbors=10 95.2
(Distance metric=Euclidean) Number of neighbors=15 95.3
Number of neighbors=50 95.9

The confusion matrix of the Decision Tree model with a maximum number of splits

of 100 is given in Figure 3.35. The highest FNR value is encountered in Zone 6. The

30.9% of data classified in Zone 6 is predicted as Zone 0. The accuracies of the

decision tree model for case 2 are higher than for case 1. The classification tree of the

model is given in Figure 3.36. Zone 0 distinguished from the others for 32 plates PHE

as can be seen in the first node of the tree. However, the Zone 0 classification is

proceeded through the below nodes. The reason for that is the overall heat transfer

coefficients of 30 plates PHE that are classified as Zone 0 are similar to the overall

heat transfer coefficients of 32 plates PHE that are classified as Zone 6. This similarity
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in the data results in the observation of the highest FNR values between Zone 0 and
Zone 6.

Decision Tree

Zone0 0 9.0% 9.0%
Zonel 0 100.0%
Zone2 9 3.4% 96.6% R
Zone3 0.5% 0.5%
7
=
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=
=
ZoneS 0 100.0%
Zoneb6 | 30.9% 30.9%
Zone7 42% 95.8 4.2%
Zone8 0 100.0%
ZoneO Zonel Zone2 Zone3 Zone4 Zone5 Zone6 Zone7 Zone8 TPR  FNR

Predicted Class

Figure 3.35: The confusion matrix of the Decision Tree model for Case 2.

The Kernel Naive Bayes model gives the same result of accuracy with both features,
as in Case 1. Whether the supporting function is selected to depict the independency
or dependency, the accuracy is not changed, 95.7%. However, when the predictor is
changed to the overall heat transfer coefficient, the accuracy decreases for Kernel
Naive Bayes model. The confusion matrix of Kernel Naive Bayes model is given in
Figure 3.37. Due to the closeness of the overall heat transfer coefficients of Zone 0 for
30 plates PHE and Zone 6 for 32 plates PHE, the highest FNR value is also observed
at this point. The 44.6% of data that is classified as Zone 6 is predicted by the model

as Zone 6, whereas the 55.4% of data is predicted correctly.

The k-nearest neighbor model is trained with the various number of neighbors, e.g., 1,
10, 15 and 50. While the number of neighbors is increasing the obtained accuracy of
the model is increasing too. The predictor data, the overall heat transfer coefficients,

have more distinguishability characteristic than all parameters that are applied in Case
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1. This can be an inference that the lowest accuracy is observed with 1 number of
neighbors. When the k, the number of neighbors, is selected as 1, the model tends to
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Kernel Naive Bayes

Zone() SR 0.2% 99.8% [UWAA

100.0%

Zonel 100.0%

3.1% 96.6% EEE

Zone2 96.6%

Zone3 99.5% 0.5% 99.5% NURA
1723
17}
=
< Zone4 100.0% 100.0%
=
[_‘
Zone5 100.0% 100.0%
Zone6 | 44.6% 44.6%
Zone7 3.5% 96.5% 96.5% [ERERZS
Zone8 100.0% 100.0%

ZoneO) Zonel Zone2 Zone3 Zone4 Zone5 Zone6 Zone7 Zone§ TPR  FNR

Predicted Class

Figure 3.37: The confusion matrix of Kernel Naive Bayes model for Case 2
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Figure 3.38: The confusion matrix of k-Nearest neighbor model for Case 2.
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overfit the training set. Even the cross-validation method that is used, is preventing
overfitting, if the test data is too similar to training data, in this case, if there is not any
variance within the data, the model still can be overfitted. It is known that if the Kk is
chosen as 1, this is the maximum fitting to the training data, i.e., indicates low bias.
Even if the k number is 1, the lowest accuracy is observed. Thus, the inference can be
the outcome that the variance within the overall heat transfer data is higher than the
predictors of case 1. The highest accuracy observed for k number is 50. This shows
that the k-nearest neighbor model achieved the required high bias- low variance

characteristic.

Similarly, with the other models, the Zone 0 and Zone 6 distinguishability problem is
observed in k-nearest neighbor model predictions. 32.0% of the data classified as Zone
6 is predicted as Zone 0. The FNR value of the k-nearest neighbor model is lower than

the Kernel Naive Bayes but slightly higher than the decision tree model.

For Case 3, the overall heat transfer coefficients are used as predictors as in Case 2,
with a difference in response groups. The responses are selected in Case 3 as grouping
Zone 0 to 5 by 2, and Zone 6,7 and 8 as one group, as shown in Table 2.2. The only
difference from Case 2 is the response groups. The accuracies of the models that are
trained in Cases 1 and 2 are shown in Table 3.9.

The decision tree model gives similar results to Case 2 even though the responses are
different. Like in Case 2, the highest accuracy of the decision tree model is achieved
with a maximum number of splits of 25. In addition, the accuracy variance within the
decision tree model variations is small like Case 2. Thus, the decision tree model

accuracies are merely dependent on the responses.

The confusion matrix of the decision tree model with a maximum number of splits of
50 is given in Figure 3.39. The FNR values are not larger than the ones that are
observed in Case 2. The accuracies may be close, but the consistency of the model
prediction is better for this grouping system method. The highest FNR value is
obtained between Group 1 and 4. The 9.2% of data classified as Group 4 is predicted
as Group 1, and the 1.8% of data classified as Group 4 is predicted as Group 2. This is
added up to the total highest FNR value of 11.0%.
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Table 3.9: The accuracies of Case 3 according to model features

Models Features Accuracy (%)
Maximum number of
splits=100 4.6
Maximum number of 94.6
Decision Tree splits=85 '
(Split criterion=Gini’s Index) Maximum number of
o 94.4
splits=50
Maximum number of
splits=25 %3
Kernel Naive Bayes Support=Positive 94.0
(Kernel type=Triangle) Support=Unbounded 89.1
Number of neighbors=1 94.4
k-nearest neighbors Number of neighbors=10 95.5
(Distance metric=Euclidean) Number of neighbors=15 95.4
Number of neighbors=50 95.9
Decision Tree
Groupl 9 0 6.5% 6.5%
Group2 97.59 2.5% 2.5%
g
g
[_1
Group3 00.0° 100.0%
Group4 9.2% 1.8% 89.0% 11.0%
Groupl Group2 Group3 Group4 TER FNR

Predicted Class

Figure 3.39: The confusion matrix of the decision tree model for Case 3.
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In Figure 3.40, the classification tree of the decision tree model is represented. In
similar with Case 2, Group 1 is generating the main node branch distinction, as can be
seen in Figure 3.40. Through the below branches, it is observed that Group 1, and
Group 4 classification branches are similar. This results in the model has difficulty

distinguishing Group 1 and Group 4, similar to Zone 0 and Zone 6 as in Case 2.

Kernel Naive Bayes

Groupl 0.3%

Group2 29.4%

True Class

Group3

Group4 12.7%

Groupl Group2 Group3 Group4 1ER FRR

Predicted Class

Figure 3.41: The confusion matrix of Kernel Naive Bayes model for Case 3.

The Kernel Naive Bayes model gives a similar result to Case 2 for the condition that
the support function is applied as positive. However, when the support function is

chosen as unbounded, the accuracy is considerably lower than Case 2.

The confusion matrix of the Kernel Naive Bayes model with unbounded support
function is given in Figure 3.41. The highest FNR value is obtained between Group 2
and Group 4, differently from the decision tree model. The 39.4% of data classified as

Group?2 is predicted as Group 4.

Similarly, the k-nearest neighbor model gives close results to Case 2. It can be deduced
that the higher accuracy is achieved with a higher k number for Case 2 and 3. Like in
Case 2, the k-nearest neighbor model is overfitted with the selection of the k number

as 1. Thus, the lowest accuracy is observed for this variation of the k-nearest neighbor
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model while the model achieves the high bias and low variance characteristic with the

selection of k number as 50 for Case 3, as in Case 2.

The confusion matrix of the k-nearest neighbor model for Case 3 with the k number as
15 is given in Figure 3.42. The highest FNR value is obtained between Group 1 and
Group 4, similar to the decision tree model. The 10.4% of data classified as Group 4
is predicted as Group 1, and the 1.8% of data classified as Group 4 is predicted as

Group 2, also similar to the decision tree model prediction.

k-Nearest Neighbor

Groupl 2.9%

Group2 1.4%

True Class

Group3 100.0%

Group4 12.2%

Groupl Group2 Group3 Group4 1EB PR

Predicted Class

Figure 3.42: The confusion matrix of the k-nearest neighbor model for Case 3.

For Case 4, the same predictor, the overall heat transfer coefficient is applied to Case
2 and 3. In difference, the response group is selected as a representation of clogging
percentages. The accuracies of the same models applied to the other cases are

represented in Table 3.9.

The decision tree model again gives similar results to Case 2 and Case 3. The highest
accuracy, 95.5% is achieved by selecting the maximum number of splits as 25 as it is
in Case 2 and 3. This shows the decision tree model is considerably dependent on the

predictor, not the responses.
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Table 3.10: The accuracies of Case 4 according to model features

Models Features Accuracy (%)
Maximum number of
splits=100 %8
Maximum number of 94.8
Decision Tree splits=85 '
(Split criterion=Gini’s Index) Maximum number of
o 94.7
splits=50
Maximum number of
splits=25 95
Kernel Naive Bayes Support=Positive 95.0
(Kernel type=Triangle) Support=Unbounded 89.7
Number of neighbors=1 94.5
k-nearest neighbors Number of neighbors=10 95.3
(Distance metric=Euclidean) Number of neighbors=15 95.3
Number of neighbors=50 95.7

Decision Tree

Pl 5.7% o 5.7%

100.0% 100.0%

True Class
e
3

P4 LERSON 16.2%

PS5 3.0%

TPR FNR

Pl P2 P3 P4 P5
Predicted Class

Figure 3.43: The confusion matrix of the decision tree model for Case 4.

72



" 9seD) 10J [9pOLU 93J] UOISIOEP 3y JO uoljeulissp aal) UOINRIILISS.IO 8yl 'S ainbi-

w)& Id 2d Sd d Sd

68L°9L1=<N {7 68L°9LL>N % 5 %

9vT 0L 1=<N 7 9¥Z°0LL>N £9€°601=<N \Y L9€'60L>N

28091 L=<N 7/ 280°9LL>N ¥6L'GLL=<N

6YZ0L 1=<N Y 6¥Z°0LL>N 62004 b=<N 7 6,0°0} 180860 1=<N {7 908'601>N £9€°604=<N 7/ €9E'60L>N

818°9L1=<n PBLGLI=<N 57/ ¥BL'SLL>N

€L0QL=<NR7 €L0°9LI>N ed

L16'601=<NTZLI6'601>N

506'68=<N 7 S06'68>N

73



In Figure 3.43, the confusion matrix of the decision tree model with the selection of a
maximum number of splits of 100 is represented. The response groups are named P1
to P5. The highest FNR value is obtained between the P4 and P1 classes. The 16.2%
of data classified as P4 is predicted as P1. The similarity between the overall heat
transfer coefficients of 30 plates PHE classified in P1 with the overall heat transfer
coefficients of 32 plates PHE classified in P4, results in this high false prediction rate,

as in Case 2 and Case 3.

The classification tree of the decision tree model for Case 4 is given in Figure 3.44.
Similar to Case 2 and 3, the P1 group generates the distinction of the main node. It is
observed that it the difficulty to classify the P1 and P4, as represented in the confusion

matrix, Figure 3.43.

Kernel Naive Bayes

P1 0.3%

B2 27.7%

0.4%

True Class
5

P4 22.5%

B3 0.2%

Pl P2 P3 P4 P5 R BAR
Predicted Class

Figure 3.45: The confusion matrix of Kernel Naive Bayes model for Case 4.

The Kernel Naive Bayes model also gives similar result to Case 2 and 3. The predictors
have more role in model predictions than the response groups. The highest accuracy,
95.0% is achieved by selecting the support function as positive. The model variation
gives smaller results with the selection of unbounded support function, with 89.7% of

accuracy.
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In Figure 3.45, the confusion matrix of Kernel Naive Bayes with the selection of an
unbounded support function is represented. The highest FNR value is obtained
between the P2 and P5. The pattern of the FNR value increase looks like similar to
Case 2 and Case 3. The main reason is that even though the predictors are grouped in
different responses, i.e., classified in training classes, the values of the predictors are
the same with the Case 2 and 3. Thus, similar patterns are seen.

k-Nearest Neighbor

P1 2.9% 3.0%

B2 1.4%

True Class
X

P4 RVl 20.5%

B5 2.6%

Pl P2 P3 P4 P5 TER BR
Predicted Class

Figure 3.46: The confusion matrix of the k-nearest neighbor model for Case 4.

Similar results with Case 2 and 3 are observed for Case 4 too regarding k-nearest
neighbor model predictions. The highest accuracy, 95.7%, is achieved by selecting the
k number as 50. As in Case 2 and 3, this state results in the overfitting at its lowest in
the model variation where the k number is selected as 50. The lowest accuracy, 94.5%,
is obtained for the selection of k number as 1. The reason is the overfitting of the model

on the training set.

In Figure 3.46, the confusion matrix of the k-nearest neighbor model for Case 4 is
given. In similar, the highest FNR value is observed between the P1 and P4. 20.5% of
the data classified as P4 is predicted as P1.
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Table 3.11: The accuracies of Case 5 according to model features

Models Features Accuracy (%)
Maximum number of
splits=100 97
Maximum number of 99.7
Decision Tree splits=85 '
(Split criterion=Gini’s Index) Maximum number of
o 99.7
splits=50
Maximum number of
splits=25 N7
Kernel Naive Bayes Support=Positive 99.8
(Kernel type=Triangle) Support=Unbounded 99.0
Number of neighbors=1 99.9
Number of neighbors=10 99.9
k-nearest neighbors Number of neighbors=15 99.9
(Distance metric=Euclidean) Number of neighbors=50 99.9
Number of neighbors=100 99.2
Number of neighbors=150 90.9

For Case 5, the responses are selected as Case 1 and 2. In difference, the pressure drop
values of CH and DHW channels are selected as predictors. The training data
distribution is shown in Figure 3.47. The data are clearly distinguishable from each
other. Therefore, the accuracies are too high compared to the other cases. The models

tend to overfit the training data.
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Figure 3.47: The training data distribution shown in the pressure difference of CH
and DHW for Case 5.

In the decision tree model for Case 5, the accuracies of the model variations are
obtained as same. The confusion matrix of the decision tree model with the selection

of a maximum number of 25 is given in Figure 3.48.

Decision Tree

[} 100.0%

0.6%

2 100.0%

2.9%

100.0% 100.0%

True Class
S

5 100.0%

99.4% MU

7 100.0%

0 1 2 3 4 5 6 7 8 TPR  FNR
Predicted Class

Figure 3.48: The confusion matrix of the decision tree model for Case 5.
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The classification tree designation for Case 5 is given in Figure 3.49. The differential
pressure values of CH and DHW channels are easy to distinguish from each other, as
shown in Figure 3.50. Therefore, the classification of the testing data based on the
trained model is achieved with high accuracy. This is the demonstration of the high

similarity between the training data and testing data.

Kernel Naive Bayes

0
1 0
2| 55% ‘W 0.3% Vol 5.7%
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5
6| 0.6% 8 0.6%
71 04% ‘ol 0.4%
8 0.0

0 1 ) 3 4 5 6 7 8 TPR  FNR

Predicted Class

Figure 3.50: The confusion matrix of Kernel Naive Bayes for Case 5.

The Kernel Naive Bayes model with the selection of unbounded support function gives
99.0% of accuracy, which is slightly less than the model variation with the positive
support function. The mentioned reason for the high accuracy is valid for this model
too. The confusion matrix of the Kernel Naive Bayes model is given in Figure 3.50.
The highest FNR value is obtained between Zone 2 and Zone 0. 94.3% of the data
classified as Zone 2 is predicted correctly. 5.5% of it is predicted as Zone 0 and 0.3%
of it is predicted as Zone 3, with a total FNR of 5.7%.
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k-Nearest Neighbor

PRV 0.6%

o | 37.0%

90.3% WENEG

True Class

38.0%

28.0%

0 1 2 3 4 5 6 7 8 TPR  FNR
Predicted Class

Figure 3.51: The confusion matrix of the k-Nearest Neighbor model for Case 5.

The k-nearest neighbor model gives the same and nearly perfect prediction accuracy
for the variants of the model that has been trialed before for Case 1 to 4. The k-nearest
neighbor model tends to overfit the training data set. The nearly perfect prediction
accuracy, 99.9%, is obtained with these predictor selections and the applied cross-
validation method. The two variants of this model are selected with k number 100 and
150. The lowest accuracy is seen for the model with the selection of 150 for k number,
in Table 3.11.

The confusion matrix of the k-nearest neighbor model with the selection of 150 for k
number is given in Figure 3.51. The highest FNR value is obtained between Zone 5
and Zone 4. 37.4% of the data classified as Zone 5 is predicted as Zone 4. It is followed
by the false prediction of 37.0% of the data classified as Zone 3, as Zone 2. Even
though the FNR value is not too low compared to other cases, false predictions are

encountered for close classes.
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Table 3.12: The accuracies of Case 6 according to model features

Models Features Accuracy (%)
Maximum number of
splits=100 %81
Maximum number of 98.7
Decision Tree splits=85 '
(Split criterion=Gini’s Index) Maximum number of
o 98.7
splits=50
Maximum number of
splits=25 %41
Kernel Naive Bayes Support=Positive 89.1
(Kernel type=Triangle) Support=Unbounded 89.0
Number of neighbors=1 98.1
Number of neighbors=10 91.1
k-nearest neighbors
Number of neighbors=15 86.9
(Distance metric=Euclidean)
Number of neighbors=50 70.8

For the last Case 6, the responses are kept the same as Case 5, the only difference is
the predictors. The CH inlet temperature, DHW outlet temperature and DHW flow rate
features have already been measured by the combi-boiler control unit during the in-
real-life operation, without the need for any additional sensor or equipment. Therefore,

they are used as the predictors for Case 6.

As in Case 1 and 5, the obtained accuracies of the decision tree model with the
selection of maximum number of splits 100, 85 and 50 are the same as each other
within the cases. However, the model with the selection of the maximum number of

splits as 25 is obtained as differently lower from the others.
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Figure 3.52: The confusion matrix of the decision tree model for Case 6.

The confusion matrix of the decision tree model with the selection of the maximum
number of splits as 25 is given in Figure 3.52. Similar to Case 5, the FNR values are
obtained between the close classes. The highest FNR value is obtained between Zone
5and 4. 14.0% of the data classified as Zone 5 is predicted as Zone 4, 7.0% of the data

classified as Zone 5 is predicted as Zone 6.

The classification tree designation of the decision tree model is given in Figure 3.53.
In Figure 3.53, the classification node is started with the decision rule as classifying

Zone 8 first. This shows Zone 8 has more clear distinctions than the others.
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The Kernel Naive Bayes models with two selections of support function type, give
approximately the same results, as in Case 1. The obtained accuracy for the unbounded
support function is 89.0%, while it is 89.1% for the positive support function. The
confusion matrix of the Kernel Naive Bayes model that is used with unbounded
support function is given in Figure 3.54. The highest FNR value is obtained for Zone
0 and Zone 1. 25.0% of the data classified as Zone 0 is predicted as Zone 1. If customer
comfort is considered, between Zone 0 and Zone 1 there is a mild comfort difference.
Therefore, the prediction accuracy of classes close to the worst zone, Zone 8, is

preferred.

Kernel Naive Bayes

25.0%

15.7%

—_

84.3% IR

14.8%

14.4%

94.4% ERWAL 5.6%

True Class
S

6 1.7%

7 99.6% 99.6% BV

0 1 2 3 4 5 6 7 8 TPR  FNR
Predicted Class

Figure 3.54: The confusion matrix of Kernel Naive Bayes model for Case 6.

In contrast to the other cases, the k-nearest neighbor model gives lower accuracy for
higher k number. This means the best result is only achieved when the model is too
fitted to the training data. The lowest accuracy of the k-nearest neighbor model is
obtained as 70.8, for k number is selected as 50. The highest accuracy is achieved as

98.1, with the selection of k number as 1.
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The confusion matrix of the k-nearest neighbor model for the selected k number as 50
Is given in Figure 3.55. The highest FNR value is obtained between Zone 1 and Zone
0, similar to the Kernel Naive Bayes model. The 39.0% of the data that is classified as
Zone 1 is predicted as Zone 0. In contrast of the other models, there are classes that

the true prediction percentages are not higher than the false ones.

k-Nearest Neighbor

0 7.8% | 2.5% | 2.5%

—

39.0% | 36.6% | 24.4%

2112.0%| 4.2% Ml 4.2% | 0.5% | 1.3%

3| 7.7% 30.3% |41.8% | 19.7% | 0.5%
g
Q4| 15% | 04% | 7.9% | 8.2% KD 11.2% | 1.9%
£
~
5 3.5% | 7.6% |29.2% 5.3% | 0.6%
6 6.3% |12.6% 13.7%
7 2.5% | 4.2% | 14.0% RARGAY 7.7%
8 6.2% | 2.4% 91.5% ERRL

0 1 2 3 4 5 6 7 8 TPR  FNR

Predicted Class

Figure 3.55: The confusion matrix of the k-Nearest Neighbor model for Case 6.
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Chapter 4

Conclusion

Fouling is an accumulation of undesired particles on the heat surfaces that causes a
lack of heat transfer. The fouling of plate heat exchangers, which is used in combi-
boilers is investigated in this thesis. The main aim of the thesis is to investigate the
machine learning algorithms to classify and predict the fouling status of PHE used in
combi-boilers, to generate the background of the predictive maintenance that is willing
to apply to combi-boilers control unit, besides investigating the fouling effect on PHEs

in terms of heat transfer and energy consumption by using a 1-D model.

The artificially generated method of experiments is used to obtain the data that is
required for the algorithm training. The data obtained from experiments are
representing the fouling behavior of the PHEs that have 30 and 32 plates. These
obtained data show the fouling effects on PHE can be observed by the used method.
The effect of fouling on PHE performance is assumed as similar to the performance
loss that would be occurred if the PHE that is already used in the combi-boiler, i.e., is
already designed for the combi-boiler, is replaced with a PHE that has fewer plate
numbers. The plate numbers, and the size of the PHE, is designed according to the
combi-boilers required power output. With this assumption, the experiment results
show that the expected trends of output temperatures and pressure drop values of both

channels are seen.

The overall heat transfer coefficient and fouling resistance coefficient are calculated
as the performance values of the tested PHES. As expected, the overall heat transfer
coefficients are resulted in decreasing while the fouling resistance coefficient is
increasing. The values are compared to the reference, which is a study that the

particulate and composite fouling of PHESs is investigated by adding the particulates
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as an accelerated test. The obtained trends and values demonstrate similar results with
the reference study in the literature.

A 1-D numerical model is structured by using Runge Kutta 4" order ordinary
differential equation solving method. The differential equations are generated
according to the thermal resistance method based on energy balance. Temperature
distribution of 32 and 30 plate PHEs by time and position was examined in a model
created in MATLAB. Three validation studies are generated to verify the model and
experiment results. The created model has almost similar results to the referenced
study [33]. The model results are also compared with the healthy and faulty
experimental results. The errors for healthy values is less than 2%. The temperature
difference at maximum for faulty values are less than 2°C. Therefore, the model is

considered as correct.

Due to fouling layer occurrence on the plate surfaces, the combi-boiler appliances need
more natural gas to heat the CH line to reach the required setpoint of DHW outlet
temperature. This additional required power to reach the setpoint of DHW defined by
the customer is calculated at maximum fouling by using the model results. The results
show that combi-boiler appliances need to supply approximately 16 and 7 kW
additional heat output to reach the required setpoint of DHW in case of maximum

fouling.

The obtained data from experiments are used to be implied to the Classification
Learner Application by MATLAB. Different cases are created to investigate the model
performances regarding the predictor and response selection. The Naive Bayes, k-
nearest neighbors, and decision tree models are used. The models are trained according
to the experiment data grouped by classes regarding customer comfort and test
conditions. The training data and testing data splitting is generated by using the k-fold

cross-validation method to avoid overfitting.

The results show that each algorithm gives a considerable performance in each case.
The k-nearest neighbors model gives higher prediction accuracies than the other
models except for Case 6. However, the k-nearest neighbors algorithm tends to overfit

the training data, while the selected number of neighbors is decreasing. Therefore, the
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best result of k-nearest neighbor is encountered for the Case 2,3 and 4 where the
predictor is selected as the overall heat transfer coefficient, due to the increasing
accuracy regarding with increasing number of neighbors. It results that the k-nearest
neighbors model would be the best among the other models for predicting the classes
according to the overall heat transfer coefficient values. The decision tree model
results show that the model is independent of its maximum number of splits selection.
The model achieves approximately the same accuracies even the maximum number of
splits value is changed. The results show the decision tree model gives better
performance in classifying than the Naive Bayes model according to the accuracy
results. In further studies, the selected models would be tested with the real data

obtained over time to see the results of the integrated model on combi-boilers.
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